对数与对数函数知识点与题型归纳(DOC 28页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《对数与对数函数知识点与题型归纳(DOC 28页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 对数与对数函数知识点与题型归纳DOC 28页 对数 函数 知识点 题型 归纳 DOC 28
- 资源描述:
-
1、高考明方向1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点3.知道对数函数是一类重要的函数模型4.了解指数函数yax与对数函数ylogax互为反函数(a0,且a1)备考知考情通过对近几年高考试题的统计分析可以看出,本节内容在高考中属于必考内容,且占有重要的分量,主要以选择题的形式命题,也有填空题和解答题主要考查对数运算、换底公式等及对数函数的图象和性质对数函数与幂、指数函数结合考查,利用单调性比较大小、解不等式是高考的热点.一、知识梳理名师一号P27注意:知识
2、点一 对数及对数的运算性质1.对数的概念 一般地,对于指数式abN,我们把“以a为底N的对数b”记作logaN,即blogaN(a0,且a1)其中,数a叫做对数的底数,N叫做真数,读作“b等于以a为底N的对数”注意:(补充)关注定义-指对互化的依据2对数的性质与运算法则(1)对数的运算法则如果a0且a1,M0,N0,那么loga(MN)logaMlogaN;logalogaMlogaN;logaMnnlogaM(nR);logamMnlogaM.(2)对数的性质alogaNN;logaaNN (a0,且a1)(3)对数的重要公式换底公式:logbN(a,b均大于零且不等于1);logab,推广
3、logablogbclogcdlogad.注意:(补充)特殊结论:知识点二 对数函数的图象与性质1.对数函数的图象与性质(注意定义域!) a1 0a0,a1,N0)练习:(补充)已知求答案: 例3.名师一号P28 高频考点 例1(2)已知函数f(x)则f(f(1)f的值是()A5B3C1D.因为f(1)log210,所以f(f(1)f(0)2.因为log30,所以f3131213.所以f(f(1)f235.二、对数函数的图象及性质的应用例1. (补充)求下列函数的定义域 (1)y. (2)ylog(x1)(164x)解析:(1)由函数定义知: 即x1.故原函数的定义域是x|x1(2)由函数有意
4、义知即1x2,且x0.故原函数的定义域为x|1x0,或0x0恒成立,a24a04a0,即a的范围为(4,0)例2.名师一号P27 对点自测5(2014重庆卷)函数f(x)log2log (2x)的最小值为_解析根据对数运算性质,f(x)log2log (2x)log2x2log2(2x)log2x(1log2x)(log2x)2log2x2,当x时,函数取得最小值.注意:换元后“新元”的取值范围练习:1、求下列函数的值域(1)ylog(x22x4) 答案1,)(2)f(x)logx3log2x22解析令tlog2x,x21t1.函数化为yt26t2(t3)271t1.当t1,即x时,ymax9
5、.当t1,即x2时,ymin3,函数的值域为3,9.2、已知集合 求实数a的取值范围分析当且仅当f(x)x2axa的值能够取遍一切正实数时,ylog2(x2axa)的值域才为R.而当0恒成立,仅仅说明函数定义域为R,而f(x)不一定能取遍一切正实数(一个不漏)要使f(x)能取遍一切正实数,作为二次函数,f(x)图像应与x轴有交点(但此时定义域不再为R)正解要使函数ylog2(x2axa)的值域为R,应使f(x)x2axa能取遍一切正数,要使f(x)x2axa能取遍一切正实数,应有a24a0,a0或a4,所求a的取值范围为(,40,)例3. (1)名师一号P27 对点自测4已知a0且a1,则函数
6、yloga(x2 015)2的图象恒过定点_解析令x2 0151,即x2 014时,y2,故其图象恒过定点(2 014,2)练习: 无论a取何正数(a1),函数恒过定点 【答案】注意:对数函数图象都经过定点(1, 0) 例3. (2) (补充)如右下图是对数函数ylogax,ylogbx,ylogcx,ylogdx的图象,则a、b、c、d与1的大小关系是 ()Aab1cd Bba1dcC1abcd Dab1dc【答案】B在上图中画出直线y1,分别与、交于A(a,1)、B(b,1)、C(c,1)、D(d,1),由图可知cd1a0,且a1)的图象如图所示,则下列函数图象正确的是()答案: B.例4
展开阅读全文