书签 分享 收藏 举报 版权申诉 / 12
上传文档赚钱

类型大学热学知识点总结(DOC 12页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5651945
  • 上传时间:2023-04-29
  • 格式:DOC
  • 页数:12
  • 大小:579.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《大学热学知识点总结(DOC 12页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    大学热学知识点总结DOC 12页 大学 热学 知识点 总结 DOC 12
    资源描述:

    1、热学复习大纲热力学第零定律:在不受外界影响的情况下,只要A和B同时与C处于热平衡,即使A和B没有接触,它们仍然处于热平衡状态,这种规律被称为热力学第零定律。 1)选择某种测温物质,确定它的测温属性; 经验温标三要素: 2)选定固定点; 3)进行分度,即对测温属性随温度的变化关系作出规定。 经验温标:理想气体温标、华氏温标、兰氏温标、摄氏温标 (热力学温标是国际实用温标不是经验温标) 理想气体微观模型1、分子本身线度比起分子间距小得多而可忽略不计2、除碰撞一瞬间外,分子间互作用力可忽略不计。分子在两次碰撞之间作自由的匀速直线运动;3、处于平衡态的理想气体,分子之间及分子与器壁间的碰撞是完全弹性碰

    2、撞; 4、分子的运动遵从经典力学的规律:在常温下,压强在数个大气压以下的气体,一般都能很好地满足理想气体方程。处于平衡态的气体均具有分子混沌性单位时间内碰在单位面积器壁上的平均分子数压强的物理意义 统计关系式宏观可测量量微观量的统计平均值分子平均平动动能温度的微观意义 绝对温度是分子热运动剧烈程度的度量是分子杂乱无章热运动的平均平动动能,它不包括整体定向运动动能。粒子的平均热运动动能与粒子质量无关,而仅与温度有关气体分子的均方根速率范德瓦耳斯方程1、 分子固有体积修正2、 分子吸引力修正平均值运算法则设是随机变量的函数, 则若为常数,则 若随机变量和随机变量相互统计独立。 又是的某一函数,是的

    3、另一函数,则应该注意到,以上讨论的各种概率都是归一化的,即随机变量会偏离平均值 ,即一般其偏离值的平均值为零,但均方偏差不为零。定义相对均方根偏差 当所有值都等于相同值时,可见相对均方根偏差表示了随机变量在平均值附近分散开的程度,也称为涨落、散度或散差。气体分子的速率分布律:处于一定温度下的气体,分布在速率附近的单位速率间隔内的分子数占总分子数的百分比只是速率的函数,称为速率分布函数。理解分布函数的几个要点:1.条件:一定温度(平衡态)和确定的气体系统,和是一定的;2.范围:(速率附近的)单位速率间隔,所以要除以;3.数学形式:(分子数的)比例,局域分子数与总分子数之比。物理意义:速率在附近,

    4、单位速率区间的分子数占总分子数的概率,或概率密度。表示速率分布在内的分子数占总分子数的概率;表示速率分布在内的分子数占总分子数的概率;(归一化条件)麦克斯韦速率分布律1. 速率在区间的分子数,占总分子数的百分比2. 平衡态麦克斯韦速率分布函数气体在一定温度下分布在最概然速率附近单位速率间隔内的相对分子数最多。重力场中粒子按高度分布:重力场中,气体分子作非均匀分布,分子数随高度按指数减小。 取对数测定大气压随高度的减小,可判断上升的高度玻尔兹曼分布律:若分子在力场中运动,在麦克斯韦分布律的指数项即包含分子的动能,还应包含势能。 当系统在力场中处于平衡状态时,其坐标介于区间 速度介于内的分子数为:

    5、上式称为玻尔兹曼分子按能量分布律表示在势能为零处单位体积内具有各种速度的分子总数.上式对所有可能的速度积分理想气体的热容1. 热容:系统从外界吸收热量,使系统温度升高,则系统的热容量为2. 摩尔热容 每物质3. 比热容 单位质量物质4. 定压摩尔热容量 5. 定容摩尔热容量 理想气体的内能(理想气体的内能是温度的单值函数)气体的迁移现象系统各部分的物理性质,如流速、温度或密度不均匀时,系统处于非平衡态。(输运过程)牛顿黏性定律速度梯度 粘滞定律 为粘度(粘性系数)粘度与流体本身性质有关 满足的流体叫牛顿流体切向动量流密度泊萧叶定律体积流率:单位时间内流过管道截面上的流体体积。 ,压力差:粘滞阻

    6、力定常流动 对水平直圆管有如下关系: 叫泊萧叶定律菲克定律: 在一维(如方向扩散的)粒子流密度与粒子数密度梯度成正比。式中负号表示粒子向粒子数密度减少的方向扩散,若与扩散方向垂直的流体截面上的处处相等,则:乘分子质量与截面面积,即可得到单位时间扩散总质量。傅立叶定律:热流(单位时间内通过的热量)与温度梯度及横截面积成正比则其中比例系数称为热导系数,其单位为 ,负号表示热量从温度较高处流向温度较低处 若设热流密度为,则:热欧姆定律把温度差称为“温压差”(以表示,其下角表示“热”,下同),把热流以表示, 则可把一根长为、截面积为的均匀棒达到稳态传热时的傅里叶定律改写为其中 而称为热阻率牛顿冷却定律

    7、对固体热源,当它与周围媒体的温度差不太大时,单位时间内热源向周围传递的热量为:为环境温度,为热源温度,为热源表面积,为热适应系数。平均碰撞频率 一个分子单位时间内和其它分子碰撞的平均次数,称为分子的平均碰撞频率。假设:每个分子都可以看成直径为的弹性小球,分子间的碰撞为完全弹性碰撞。大量分子中,只有被考察的特定分子以平均速率运动,其它分子都看作静止不动。单位时间内与分子发生碰撞的分子数为 平均碰撞频率为考虑到所有分子实际上都在运动,则有因此用宏观量表示的平均碰撞频率为平均自由程一个分子连续两次碰撞之间经历的平均 自由路程叫平均自由程单位时间内分子经历的平均距离,平均碰撞次每个分子都在运动,平均碰

    8、撞修正为: 1)准静态过程是一个进行的“无限缓慢”,以致系统连续不断地经历着一系列平衡态的过程; 2)可逆与不可逆过程:系统从初态出发经历某一过程变到末态,若可以找到一个能使系统和外界都复原的过程(这时系统回到初态,对外界也不产生任何影响),则原过程是可逆的。若总是找不到一个能使系统与外界同时复原的过程,则原过程是不可逆的。(只有无耗散的准静态过程才是可逆过程) 功和热量功是力学相互作用下的能量转移在力学相互作用过程中系统和外界之间转移的能量就是功。1) 、只有在系统状态变化过程中才有能量转移。2) 、只有在广义力(如压强、电动势等)作用下产生了广义位移(如体积变化、电量迁移等)后才作了功。3

    9、)、在非准静态过程中很难计算系统对外作的功。4)、功有正负之分。体积膨胀功Apexdx1、外界对气体所作的元功为:所作的总功为:2、 气体对外界所作的功为:3、 理想气体在几种可逆过程中功的计算等温过程:等压过程:利用状态方程可得:等体过程:其它形式的功拉伸弹簧棒所作的功 表面张力功 是表面张力系数可逆电池所作的功 热力学第一定律 自然界一切物体都具有能量,能量有各种不同形式,它能从一种形式转化为另一种形式,从一个物体传递给另一个物体,在转化和传递过程中能量的总和不变。内能定理 一切绝热过程中使水升高相同的温度所需要的功都是相等的。注意:1、内能是一种宏观热力学的观点,不考虑微观的本质。2、

    10、内能是一个相对量。3、 热学中的内能不包括物体整体运动的机械能。4、 内能概念可以推广到非平衡态系统。5、 有些书上提到的热能实质上是指物体的内能。热力学第一定律的数学表达式:热容与焓定体热容与内能定体比热容,定压比热容,定体摩尔热容定压摩尔热容。等体过程 任何物体在等体过程中吸收的热量就等于它内能的增量。定压热容与焓在等压过程中吸收的热量等于焓的增量. 理想气体定体热容及内能理想气体定压热容及焓迈雅公式理想气体的等体、等压、等温过程1)等体过程2) 等压过程 3) 等温过程绝热过程即:多方过程 所有满足=常数的过程都是理想气体多方过程,其中可取任意实数。多方过程的功:代替多方过程摩尔热容 当

    11、时:, 吸热若时:, 放热 (称为多方负热容)循环过程系统由某一平衡态出发,经过任意的一系列过程又回到原来的平衡态的整个变化过程,叫做循环过程。顺时针-正循环;逆时针-逆循环。正循环热机及其效率 ABCDpV0ABCD所围成的面积就是正循环所做的净功。热机的效率:由热力学第一定律:卡诺热机只要卡诺循环的不变,任意可逆卡诺热机效率始终相等内燃机循环1、 定体加热循环(奥托循环)2、 定压加热循环(狄塞尔循环)焦耳-汤姆孙效应制冷循环与制冷系数可逆卡诺制冷机的制冷系数 相同,越小,吸出等量热量,需要越大。相同,越大,吸出等量热量,需要越大。热力学第二定律 开尔文表述:不可能从单一热源吸取热量,并将

    12、这热量变为功,而不产生其他影响; 克劳修斯表述:热量可以自发地从较热的物体传递到较冷的物体,但不可能自发地从较冷的物体传递到较热的物。卡诺定理1) 在相同的高温热源和相同的低温热源间工作的一切可逆热机其效率都相等,而与工作物质无关。2) 在相同高温热源与相同低温热源间工作的一切热机中,不可逆热机的效率都不可能大于可逆热机的效率。注意:这里所讲的热源都是温度均匀的恒温热源 若一可逆热机仅从某一确定温度的热源吸热,也仅向另一确定温度的热源放热,从而对外作功,那么这部可逆热机必然是由两个等温过程及两个绝热过程所组成的可逆卡诺机。熵与熵增加原理:热力学系统从平衡态绝热过程到达另一种平衡态的过程中,它的

    13、熵永不减少,若过程是可逆的,则熵不变;若过程是不可逆的,则熵增加。(指一个封闭系统中发生任何不可逆过程导致熵增加)克劳修斯等式由卡诺定理得: 对任何一个可逆循环: 可推广到任何可逆循环: 这就是克劳修斯等式熵和熵的计算 引入态函数熵:注意:1、若变化路径是不可逆的,则上式不能成立; 2、熵是态函数; 3、若把某一初态定为参考态,则: 4、上式只能计算熵的变化,它无法说明熵的微观意义,这也是热力学的局限性; 5、熵的概念比较抽象,但它具有更普遍意义。以熵来表示热容理想气体的熵 温熵图abcdTS吸收的净热量在一个有限的可逆过程中,系统从外界所吸收的热量为:吸收的净热量等于热机在循环中对外输出的净

    14、功。图上逆时针的循环曲线所围面积是外界对制冷机所作的净功。第二定律的数学表达式对于任一初末态 均为平衡态的不可逆过程(在图中可以从连接到的一条虚线表示),可在末态、初态间再连接一可逆过程,使系统从末态回到初态,这样就组成一循环。这是一不可逆循环,从克劳修斯不等式知上式又可改写为:将代表可逆过程的熵的表达式与之合并,可写为:这表示在任一不可逆过程中的的积分总小于末、初态之间的熵之差;但是在可逆过程中两者却是相等的,这就是第二定律的数学表达式。熵增加原理数学表达式在上式中令,则它表示在不可逆绝热过程中熵总是增加的; 在可逆绝热过程中熵不变。这就是熵增加原理的数学表达式。热力学基本方程准静态过程的热

    15、力学第一定律数学表达式为:由于在可逆过程中,故第一定律可写为:对于理想气体,有,所有可逆过程热力学基本上都从上面两个式子出发讨论问题的。物质的五种物态气态、液态、固态是常见的物态。液态和固态统称为凝聚态,这是因为它们的密度的数量级是与分子密度堆积时的密度相同的。 自然界中还存在另外两种物态:等离子态与超密态。等离子态也就是等离子体。固体:固体物质的主要特征是它具有保持自己一定体积(与气态不同)和一定形状(与液态不同)的能力。固体分为晶体与非晶体两大类晶体:通过结晶过程形成的具有规则几何外形的固体叫晶体。晶体中的微粒按一定的规则排列。构成晶体微粒之间的结合力。结合力越强,晶体的熔沸点越高,晶体的

    16、硬度越大。晶体具有规则的几何外形晶体具有各向异性特征:所谓晶体的各向异性是指各方向上的物理性质如力学性质、热学性质、电学性质、光学性质等都有所不同晶体有固定的熔点和溶解热单晶体:在整块晶体中沿各个方向晶体结构周期性地、完整地重复(如石英)。多晶体:微晶粒之间结晶排列方向杂乱无章(如;金属)。单晶体或多晶体:只要由同种材料制成,它在给定压强下的熔点、溶解热是确定。这是鉴别晶体、非晶体的最简单的方法。液体液体的短程结构:液体具有短程有序、长程无序的特点。线度:几个分子直径线度液体在小范围内出现”半晶体状态“的微观结构。液体分子的热运动实验充分说明,液体中的分子与晶体及非晶态固体中的分子一样在平衡位

    17、置附近作振动。在同一单元中的液体分子振动模式基本一致,不同单元间分子振动模式各不相同。但是,在液体中这种状况仅能保持一短暂时间.以后,由于涨落等其他因素,单元会被破坏,并重新组成新单元.。液体中存在一定分子间隔也为单元破坏及重新组建创造条件液体的表面现象一种物质与另一种物质(或虽是同一种物质,但其微观结构不同)的交界处是物质结构的过渡层 (这称为界面),它的物理性质显然不同于物质内部,具有很大的特殊性。 其中最为简单的是液体的表面现象由液体与其它物质存在接触界面而产生的 有关现象称为液体的表面现象表面张力当液体与另一种介质(例如与气体、固体或另一种液体)接触时,在液体表面上会产生一些与液体内部

    18、不同的性质。 现在先考虑液体与气体接触的自由表面中的情况。 表面张力是作用于液体表面上的使液面具有收缩倾向的一种力。液体表面单位长度上的表面张力称为表面张力系数,以表示 表面能与表面张力系数从微观上看,表面张力是由于液体表面的过渡区域(称为表面层)内分子力作用的结果。表面层厚度大致等于分子引力的有效作用距离,其数量级约为,即二、三个分子直径的大小。设分子相互作用势能是球对称的,我们以任一分子为中心画一以为半径的分子作用球. 在液体内部,其分子作用球内其他分子对该分子的作用力是相互抵消的。 但在液体表面层内却 并非如此.若液体与它的蒸气相接触,其表面层内分子作用球的情况示于图。因表面层分子的作用

    19、球中或多或少总有一部分是密度很低的气体,使表面层内任一分子所受分子力不平衡,其合力是垂直于液体表面并指向液体内部的。L在这种分子力的合力的作用下,液体有尽量缩小它的表面积的趋势,因而使液体表面像拉紧的膜一样。表面张力就是这样产生的。当外力在等温条件下拉伸铁丝(见图)以扩大肥皂膜的表面积时,力作的功为因为, 故在扩大液体表面积过程中,一部分液体内部的分子要上升到表面层中,而进入表面层的每一个分子都需克服分子力的合力(其方向指向液体内部)作功。既然分子力是一种保守力,外力克服表面层中分子力的合力所作的功便等于表面层上的分子引力势能的增加。我们把液体表面比液体内部增加的分子引力势能称为表面自由能(简称为表面能)故可知,表面张力系数就等于在等温条件下增加单位面积液体表面所增加的表面自由能。正因为表面张力系数有两种不同的定义。它的单位也可写成两种不同的形式:弯曲液面附加压强 很多液体表面都呈曲面形状,常见的液滴、毛细管中水银表面及肥皂泡的外表面都是凸液面,而水中气泡、毛细管中的水面、肥皂泡的内液面都是凹液面。 由于表面张力存在,致使液面内外存在的压强差称为曲面附加压强。12

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:大学热学知识点总结(DOC 12页).doc
    链接地址:https://www.163wenku.com/p-5651945.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库