让再看你眼(高中数学知识点回顾)(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《让再看你眼(高中数学知识点回顾)(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 让再看你眼高中数学知识点回顾DOC 19页 再看 高中数学 知识点 回顾 DOC 19 下载 _其他_数学_高中
- 资源描述:
-
1、 让我再看你一眼高中数学知识点回顾姓名: 答 题 技 巧一、 技术矫正: 考试中时间分配及处理技巧非常重要,有几点需要必须提醒同学们注意: 、按序答题,先易后难:一定要选择熟题先做、有把握的题目先做; 、不能纠缠在某一题、某一细节上,该跳过去就先跳过去,千万不能感觉自己被卡住,这样会心慌,影响下面做题的情绪; 、避免“回头想”现象。一定要争取一步到位,不要先做一下,等回过头来再想再检查,高考时间较紧张,也许待会儿根本顾不上再来思考; 、做某一选择题时如果没有十足的把握,初步答案或猜估的答案必须先在卷子上做好标记,有时间再推敲,不要空答案,否则要是时间来不及瞎写答案只能增加错误的概率。二、 规范
2、化提醒: 这是取得高分的基本保证,规范化包括:解题过程有必要的文字说明或叙述;注意解完后再看一下题目,看你的解答是否符合题意,谨防因解题不全或失误,答题或书写不规范而失分,总之,要吃透题“情”;合理分配时间,做到一准、二快、三规范,特别是要注意解题结果的规范化。 例如: 、解与解集:方程的结果一般用解表示(除非强调求解集);不等式、三角方程的结果一般用解集(集合或区间)表示.三角方程的通解中必须加.在写区间或集合时,要正确地书写圆括号、方括号或大括号,区间的两端点之间、集合的元素之间用逗号隔开; 、解题结束后一定要写上符合题意的“答”,如利用法向量求出的空间角的余弦,应用题等都要作答; 、分类
3、讨论题,最后一定要写综合性结论; 、任何结果要最简.如等. 、排列组合题,无特别声明,要求出数值. 、函数解析式后面一般要注明定义域; 、参数方程化普通方程,要考虑消参数过程中最后的限制范围; 、注意轨迹与轨迹方程的区别:轨迹方程一般用普通方程表示,轨迹则需要说明图形形状,且有条件限制的轨迹方程必须注明或的范围.三、考前寄语: 、先易后难,先熟后生; 、一慢一快:审题要慢,做题要快; 、不能小题难做,小题大做,而要小题小做,小题巧做; 、我易人易我不大意,我难人难我不畏难; 、考试不怕题不会,就怕会题做不对; 、基础题拿满分,中档题拿足分,难题力争多得分,似曾相识题力争不失分; 、对数学解题有
4、困难的考生的建议:立足中下题目,力争高上水平,有时“放弃”是一种策略。 让 我 再 看 你 一 眼 高中数学知识点回顾 一、集合与简易逻辑 1、常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 ;实数集 ;正实数集 。 2、注意区分集合中元素的形式,如: 表示 ; 表示 ; 表示 ; 表示 ; 3、空集是指不含任何元素的集合,空集是任何集合的子集,也是任何非空集合的真子集。 (1)注意、和的区别: 表示 ;表示 ;表示 。 (2)注意:当条件为时在讨论的时候不要遗忘了的情况 如:,如果,则的取值为 . 4、含个元素的集合的子集个数为 ;真子集个数为 。 5、若且,则的 条件是
5、 6、注意命题的否定与它的否命题的区别: 命题的否定是 ,的否命题是 ;命题“或”的否定是 ;“且”的否定是 ;命题“”的否定是 。二、函数 1、映射:: (1)集合中的元素在中必有象且中不同元素在中可以有 ; (2)集合中的元素在中不一定有 。 (3)若,;问:到的映射有 个,到的映射有 个; 2、复合函数的定义域: (1)若定义域为-1,2,则f(2x+1)的定义域为 ; (2)若f(x2)定义域为-1,2,则f(x)的定义域为 ; 3、复合函数单调性由“同增异减”判定。即:对于复合函数,设,若的单调性与的单调性相同时就是的 ;若的单调性与的单调性相异时就是的 。 提醒:(1)求单调区间时
6、要注意定义域;(2)单调性一般用区间表示,不能用集合表示。如:函数的单调递增区间是.4、函数的奇偶性 (1)函数有奇偶性的必要条件是其定义域是关于 ;(2)若是偶函数,则 ; 如,偶函数在上是增函数,则不等式的解集为 ; (3)定义域内可取零的奇函数必满足 ;(4) 是偶函数 ; (5)若是偶函数,则的对称轴是 ;若是奇函数,则的对称中心是 。 5、函数图象的几种常见变换 (1)平移变换:左右平移-“左加右减”(注意是针对而言); 上下平移-“上加下减”(注意是针对而言). (2)翻折变换:; . (3)伸缩变换(): ; (4)对称变换: 函数的图像与的图像关于 对称; 函数的图像与函数的图
7、像关于 对称; 函数的图像与函数的图像关于 对称; 函数的图像与它的反函数的图像关于 对称; 若函数满足,则的图像关于 对称; 对于两个函数,,则它们图像关于直线对称(由 求得) 6、反比例函数:定义域值 域单调性对称中心渐近线 7、双钩函数(又叫NiKe函数) 定义域: ;值域: ; 奇偶性: ; 单调性: 是增函数; 是减函数。 8、指数函数:定义域值 域函数值单调性 9、对数函数:定义域值 域函数值单调性注意:(1)与的图象关系是 ;(2)对数运算法则: ; ; ; (3) ;换底公式: ;对数恒等式: ; (4)已知函数的定义域为,则的取值范围为 。 (5)已知函数的值域为,则的取值范
8、围为 。 10、恒成立;恒成立三、导数 1、导数的定义:在点处的导数记作. 2、函数在点处的导数的几何意义:曲线在点处切线的斜率, 即曲线在点处的切线的斜率是,切线方程为. 3、常见函数的导数公式:= (为常数);= ;= ;= ; = ; = ; = ;= 。 4、导数的四则运算法则: ; ; 5、利用导数判断函数的单调性: 设函数在某个区间内可导,如果,那么为 ;如果,那么为 。 6、利用导数求函数极值: 若方程的根,当时且时,那么函数在处取得 值;当时且时,那么函数在处取得最大值;那么函数在这个根处取得 值;将在内的极值与、比较,其中最大的一个为最大值,最小的一个为最小值。 7、定积分
9、(1)定积分概念:设函数f(x)在区间a,b上连续,用分点ax0x1xi1xixnb把区间a,b等分成n个小区间,在每个小区间xi1,xi上取任一点i(i1,2,n)作和式In(i)x(其中x为小区间长度),把n即x0时,和式In的极限叫做函数f(x)在区间a,b上的定积分。记作:,即(i)x。这里,a与b分别叫做定积分的下限与上限。区间a,b叫做积分区间,函数f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式。 (2)定积分的计算: 如果f(x)是区间上的连续函数,并且那么 F(b)-F(a)。这个结论叫做微积分基本定理。又叫莱面尼兹公式。为了方便,我们常常把F(b)-F(a)记成
10、 (3).定积分求曲边梯形面积由三条直线xa,xb(ab),x轴及一条曲线yf(x)围成的曲边梯的面积如果图形由曲线y1f1(x),y2f2(x),及直线xa,xb(ab)围成,那么所求图形的面积 (6)定积分的物理应用:. 物体做变速直线运动经过的位移s等于其速度函数v=v(t)在时间区间上的定积分。 如果物体沿与变力F(x)相同的方向移动,那么从位置x=a到x=b变力所做的功四、不等式1、均值不等式(又称基本不等式):若则,在时取等号。 如:若正数满足,则的最小值 已知,则的最大值 。 ,的最大值 。 2、绝对值的三角不等式: ;3、 柯西不等式: 设,则 (在时取等号) 4、高次不等式:
11、序轴标根法的步骤:(1)化成标准型,(2)将每个因式的根标在数轴上;(3)从右上方开始画出曲线依次通过每个数轴上的每个根。五、三角函数: 1、在半径为的圆内弧长为的圆心角的弧度数的绝对值 2、诱导公式可用概括为: , 。 , , ; , , ; , , ; , , ; , , ; , , , ; , , , 。3、 两角和、差公式 , , ; , , ; 4、二倍角公式 , , = = ; 5、降次公式: ; ; 6、辅助角公式: (其中 ) 7、三角函数的图象和性质:图 象定义域值域周期奇偶性对称性对称轴中心单调性增区间减区间最值(指出此时的值)最大值最小值 8、正弦型函数(1)先平移后伸缩
12、: ( )( ) ( )( )( )( )(2)先伸缩后平移:( )( )( )( )( )( ) 9、解斜三角形: (1)正弦定理: = = =(为 ) (2)余弦定理: ; ; ; (3)面积公式: = 其中,、分别为的外接圆和内切圆的半径。 10、常用的利用三角换元 如:在圆中,可设;在椭圆中,可设。六、数列 1、和之间的关系:(如若在时也适合,则统一成一种形式) 2、等差数列、等比数列的性质:等差数列等比数列求和公式 = 时 时 性质若, 则 ;当,则 ;若,则_ _;特别当,则 ;3、根据数列递推公式求通项(1)累加法:已知中,则= (2)累乘法:已知中,则= (3)(为常数)型:构
展开阅读全文