结构力学最全知识点梳理及学习方法(DOC 91页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《结构力学最全知识点梳理及学习方法(DOC 91页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 结构力学最全知识点梳理及学习方法DOC 91页 结构 力学 知识点 梳理 学习方法 DOC 91
- 资源描述:
-
1、结构力学最全知识点梳理及学习方法第一章绪 论1-1结构力学的研究对象和任务一、 结构的定义:由基本构件(如拉杆、柱、梁、板等)按照合理的方式所组成的构件的体系,用以支承荷载并传递荷载起支撑作用的部分。注:结构一般由多个构件联结而成,如:桥梁、各种房屋(框架、桁架、单层厂房)等。最简单的结构可以是单个的构件,如单跨梁、独立柱等。二、 结构的分类:由构件的几何特征可分为以下三类1杆件结构由杆件组成,构件长度远远大于截面的宽度和高度,如梁、柱、拉压杆。 2薄壁结构结构的厚度远小于其它两个尺度,平面为板曲面为壳,如楼面、屋面等。3实体结构结构的三个尺度为同一量级,如挡土墙、堤坝、大块基础等。 三、课程
2、研究的对象w 材料力学以研究单个杆件为主w 弹性力学研究杆件(更精确)、板、壳、及块体(挡土墙)等非杆状结构w 结构力学研究平面杆件结构四、课程的任务1研究结构的组成规律,以保证在荷载作用下结构各部分不致发生相对运动。探讨结构的合理形式,以便能有效地利用材料,充分发挥其性能。 2计算由荷载、温度变化、支座沉降等因素在结构各部分所产生的内力,为结构的强度计算提供依据,以保证结构满足安全和经济的要求。3计算由上述各因素所引起的变形和位移,为结构的刚度计算提供依据,以保证结构在使用过程中不致发生过大变形,从而保证结构满足耐久性的要求。1-2结构计算简图一、计算简图的概念:将一个具体的工程结构用一个简
3、化的受力图形来表示。选择计算简图时,要它能反映工程结构物的如下特征: 1受力特性(荷载的大小、方向、作用位置) 2几何特性(构件的轴线、形状、长度) 3支承特性(支座的约束反力性质、杆件连接形式)二、结构计算简图的简化原则1计算简图要尽可能反映实际结构的主要受力和变形特点,使计算结果安全可靠;2略去次要因素,便于分析和计算。三、结构计算简图的几个简化要点1实际工程结构的简化:由空间向平面简化2杆件的简化:以杆件的轴线代替杆件 3结点的简化:杆件之间的连接由理想结点来代替(1)铰结点:铰结点所连各杆端可独自绕铰心自由转动,即各杆端之间的夹角可任意改变。不存在结点对杆的转动约束,即由于转动在杆端不
4、会产生力矩,也不会传递力矩,只能传递轴力和剪力,一般用小圆圈表示。(2)刚结点:结点对与之相连的各杆件的转动有约束作用,转动时各杆间的夹角保持不变,杆端除产生轴力和剪力外,还产生弯矩,同时某杆件上的弯矩也可以通过结点传给其它杆件。(3)组合结点(半铰):刚结点与铰结点的组合体。4.支座的简化:以理想支座代替结构与其支承物(一般是大地)之间的连结 (1)可动铰支座:又称活动铰支座、链杆支座、辊轴支座,允许沿支座链杆垂直方向的微小移动。沿支座链杆方向产生一个约束力。(2)固定铰支座:简称铰支座,允许杆件饶固定铰铰心有微小转动。过铰心产生任意方向的约束力(分解成水平和竖直方向的两个力)。如预制柱插入
5、杯形基础,四周用沥青麻丝填实。 (3)固定支座:不允许有任何方向的移动和转动,产生水平、竖直及限制转动的约束力。(4)定向支座:又称滑动支座,允许杆件在一个方向上滑动,限制在另一个方向的运动和转动,提供两个约束力。四、结构计算简图示例例:单层工业厂房、框架结构、桁架结构1-3平面杆件结构和荷载的分类一、 平面杆件结构的分类(一)按结构的受力特点分类1梁:是一种受弯构件,轴线常为一直线(水平或斜向),可以是单跨梁,也可以是多跨连续梁,其支座可以是铰支座、可动铰支座,也可以是固定支座。2刚架:由梁和柱组成,具有刚结点。刚架杆件以受弯为主,所以又叫梁式构件。各杆会产生弯矩、剪力、轴力,但以弯矩为主要
6、内力。3桁架:由若干直杆在两端用铰结点连接构成。桁架杆件主要承受轴向变形,是拉压构件。支座常为固定铰支座或可动铰支座,当荷载只作用于桁架结点上时,各杆只产生轴力。4组合结构:由梁式构件和拉压构件构成。即结构中部分是链杆,部分是梁或刚架,在荷载作用下,链杆中往往只产生轴力,而梁或刚架部分则同时还存在弯矩与剪力,5拱:一般由曲杆构成,在竖向荷载作用下有水平支座反力。拱内不仅存在剪力、弯矩,而且还存在轴力。(二)按几何组成分类1静定结构:由静力平衡条件求解 2超静定结构:由静力平衡条件和结构的变形几何条件共同求出。 二、荷载的分类荷载是主动作用在结构上的外力,如结构自重、人群、水压力、风压力等。 (
7、一)按作用范围分类1.分布荷载:体荷载面荷载线荷载(均布、非均布) 2.集中荷载:如吊车轮压、汽车荷载等(二)按作用时间分类1.恒载:永久作用在结构上。如结构自重、永久设备重量。2.活载:暂时作用在结构上。如人群、风、雪及车辆、吊车、施工荷载等。(三)按作用位置的变化情况分类1固定荷载:作用位置固定不变的荷载,如所有恒载、屋楼面均布活荷载、风载、雪载等。2移动荷载:在荷载作用期间,其位置不断变化的荷载,如吊车荷载、火车、汽车等。(四)按作用性质分类1静力荷载:荷载不变化或变化缓慢,不会是结构产生显著的加速度,可忽略惯性力的影响。2动力荷载:荷载(大小、方向、作用线)随时间迅速变化,使结构发生不
8、容忽视的惯性力。例如锤头冲击锻坯时的冲击荷载、地震作用等。 1-4结构力学的学习方法一、课程定位:土建工程专业的一门主要技术基础课,在专业学习中有承上启下的作用二、学习方法1注意理论联系实际,为后续专业课的学习打基础2注意掌握分析方法与解题思路3注意对基本概念和原理的理解,多做习题第二章 平面体系的几何组成分析2-1 概述一、 研究体系几何组成的目的1. 前提条件:不考虑结构受力后由于材料的应变而产生的微小变形,即把组成结构的每根杆件都看作完全不变形的刚性杆件。2. 几何不变体系:在荷载作用下能保持其几何形状和位置都不改变的体系。几何可变体系:在荷载作用下不能保持其几何形状和位置都不改变的体系
9、。注意:建筑结构必须是几何不变的。3研究体系几何组成的目的(1)研究几何不变体系的组成规律,用以判定一结构体系是否可作为结构使用;(2)明确结构各部分在几何组成上的相互关系,从而选择简便合理的计算顺序;(3)判定结构是静定结构还是超静定结构,以便选择正确的结构计算方法。二、相关概念1刚片:假想的一个在平面内完全不变形的刚性物体叫作刚片。注:(1)在平面杆件体系中,一根直杆、折杆或曲杆都可以视为刚片,并且由这些构件组成的几何不变体系也可视为刚片。地基基础也可视为一个大刚片。(2)刚片中任意两点间的距离保持不变,所以可由刚片中的一条直线代表刚片。2.自由度(1)自由度的概念:体系运动时,用以确定体
10、系在平面内位置所需的独立坐标数。(2)一个点:在平面内运动完全不受限制的一个点有2个自由度。 一个刚片:在平面内运动完全不受限制的一个刚片有3个自由度。注:由以上分析可见,凡体系的自由度大于零,则是可以发生运动的,位置是可以改变的,即都是几何可变体系。 3.约束(1)定义:又称联系,是体系中构件之间或体系与基础之间的联结装置。限制了体系的某些方向的运动,使体系原有的自由度数减少。也就是说约束,是使体系自由度数减少的装置。(2)约束的类型:链杆、铰结点、刚结点(图1)链杆:一根单链杆或一个可动铰(一根支座链杆)具有个约束,如图(a)。单铰结点:一个单铰或一个固定铰支座(两个支座链杆)具有2个约束
11、,如图(b)。单刚结点:一个单刚结点或一个固定支座具有3个约束,如图(c)。单约束:连接两个物体的约束叫单约束。复约束:连接3个(含3个)以上物体的约束叫复约束。1)复铰结点:若一个复铰上连接了N个刚片,则该复铰具有2(N-1)个约束,等于(N-1)个单铰的作用。2)复刚结点:若一个复刚结点上连接了N个刚片,则该复刚结点具有3(N-1)个约束,等于(N-1)个单刚结点的作用。(3)必要约束:使体系自由度数减少为零所需的最少约束。多余约束:体系上约束数目大于体系的自由度数目,则其差值就是多余约束。4.实铰与虚铰(1)实铰的概念:由两根直接相连接的链杆构成。(2)虚铰的概念:虚铰是由不直接相连接的
12、两根链杆构成的。虚铰的两根链杆的杆轴可以平行、交叉,或延长线交于一点。(3)虚铰的作用:当两个刚片是由有交汇点的虚铰相连时,两个刚片绕该交点(瞬时中心,简称瞬心)作相对转动。从微小运动角度考虑,虚铰的作用相当于在瞬时中心的一个实铰的作用。三、平面体系的自由度计算1.体系与基础相连时的自由度计算公式: W= 3m(3g + 2j + r)注:支座链杆数是把所有的支座约束全部转化为链杆约束所得到的。2.体系不与基础相连时的自由度计算公式体系不以基础相连,则支座约束r =0,体系对基础有3个自由度,仅研究体系本身的内部可变度V,可得体系自由度的计算公式为: W = V+3得 V= W3=3m(3g
13、+ 2j)3例1.求图示多跨梁的自由度。解: W= 3m(3g2jr)=33(224)=1 因 W0,体系是几何可变的。例2.求图示不与基础相连体系的自由度。解: 体系内部可变度 V = 3m( 3g + 2j )3=37293=0 故体系几何不变。3. 体系自由度的讨论(1)W0,自由度数目约束数目,体系几何可变(2)W=0,具有使体系几何不变所需的最少约束(3)W0,自由度数目约束数目,体系具有多余约束(可能是几何可变体系,也可能是超静定结构)注:W0是体系几何不变的必要条件。2-2无多余约束的几何不变体系的组成规则一、 一点与一刚片1.规则一:一个点与一个刚片之间用两根不在同一条直线上的
14、链杆相连,组成无多余约束的几何不变体系。2.结论:二元体规则(1)二元体:两根不在同一条直线上的链杆联接一个新结点的装置。(2)二元体规则:在一已知体系中增加或减少二元体,不改变原体系的几何性质。注:利用二元体规则简化体系,使体系的几何组成分析简单明了。二、两刚片规则1.规则二:两个刚片用一个单铰和杆轴不过该铰铰心的一根链杆相连,组成无多余约束的几何不变体系。2.推论:两个刚片用不全交于一点也不全平行的三根链杆相连,组成无多余约束的几何不变体系。三、三刚片规则1.规则三:三个刚片用不全在一条直线上的三个单铰(可以是虚铰)两两相连,组成无多余约束的几何不变体系。2.铰接三角形规则:平面内一个铰接
15、三角形是无多余约束的几何不变体系。注意:以上三个规则可互相变换。之所以用以上三种不同的表达方式,是为了在具体的几何组成分析中应用方便,表达简捷。四、瞬变体系的概念1.瞬变体系的几何组成特征:在微小荷载作用下发生瞬间的微小刚体几何变形,然后便成为几何不变体系。2.瞬变体系的静力特性:在微小荷载作用下可产生无穷大内力。因此,瞬变体系或接近瞬变的体系都是严禁作为结构使用的。注:瞬变体系一般是总约束数满足但约束方式不满足规则的体系,是特殊的几何可变体系。如上图2(a),体系是几何不变的;图(b)(c)体系是几何瞬变的;图(d)是几何常变的。如上图3(a),体系仍是几何不变的,但有一多余约束;在图3(b
16、)中,两链杆1、2在一条直线上,体系是几何瞬变的。五、几何组成分析举例几何组成分析的一般要领是:先将能直接观察出的几何不变部分当作刚片,并尽可能扩大其范围,这样可简化体系的组成,揭示出分析的重点,便于运用组成规则考察这些刚片间的联结情况,作出结论。下面提出几个组成分析的途径,可视具体情况灵活运用:(1)当体系中有明显的二元体时,可先依次去掉其上的二元体,再对余下的部分进行分析。如图4所示体系。(2)当体系的基础以上部分与基础间以三根支承链杆按规则二相联结时,可先拆除这些支杆,只就上部体系本身进行分析,所得结果即代表整个体系的组成性质。如图5所示体系。 图5(3)凡是只以两个铰与外界相连的刚片,
17、不论其形状如何,从几何组成分析的角度看,都可看作为通过铰心的链杆。如图6所示体系。图4 图6例2.1对下列图示各体系作几何组成分析。(简单规则的一般应用方法)。(1) 无多余约束的几何不变体系(2)(2)无多余约束的几何不变体系(3) 有一个多余约束的几何不变体系(任一链杆均可视为多余约束)(4)图(a)三铰不共线为无多余约束的几何不变体系;图(b)三链杆延长交于一点是瞬变体系。例2.2对下列图示体系作几何组成分析。图(a)为无多余约束的几何不变体系;图(b)为无多余约束的几何不变体系;图(c)是少一个约束的几何可变体系;图(d)为无多余约束的几何不变体系。例2.3对下列图示体系作几何组成分析
18、(说明刚片和约束的恰当选择的影响)。图(a)三个虚铰不共线为无多余约束的几何不变体系;图(b)为无多余约束的几何不变体系。注意:三个刚片的三个单铰有无穷远虚铰情况1两个平行链杆构成沿平行方向上的无穷远虚铰。2三个刚片由三个单铰两两相连,若三个铰都有交点,容易由三个铰的位置得出体系几何组成的结论。当三个单铰中有或者全部为无穷远虚铰时,可由分析得出以下依据和结论:(1)当有一个无穷远虚铰时,若另两个铰心的连线与该无穷远虚铰方向不平行,体系几何不变;若平行,体系瞬变。(2)当有两个无穷远虚铰时,若两个无穷远虚铰的方向相互不平行,体系几何不变;若平行,体系瞬变。(3)当有三个无穷远虚铰时,体系瞬变。图
19、(a)为无多余约束的几何不变体系;图(b)为几何瞬变体系;图(c)为几何瞬变体系。例2.4对下列图示体系作几何组成分析。 图(a)为几何瞬变体系; 图(b)为几何瞬变体系; 图(c)为无多余约束的几何不变体系; 图(d)为几何瞬变体系。例2.4对图示各体系作几何组成分析。图(a)为几何可变体系(少两个约束);图(b)为几何瞬变体系;图(c)为几何瞬变体系。 第二章 小 结一、本章要求1了解几何不变、几何可变、瞬变体系、刚片、自由度、虚铰、约束及多余约束的概念;2重点理解并掌握平面几何不变体系的简单组成规则,并能灵活应用到对体系的分析中。二、组成规则应用要点1组成规则中的四个要素:刚片个数、约束
20、个数、约束方式、结论。2几何组成分析的要点是:紧扣规则。即把体系简化或分步取为两个或三个刚片,由相应的规则进行分析;分析过程中,规则中的四个要素均要明确表达,缺一不可。三、对体系作几何组成分析的一般途径1恰当灵活地确定体系中的刚片和约束体系中的单个杆件、折杆、曲杆或已确定的几何不变体系均可视为刚片。但若刚片只用两个铰与体系的其它部分连接时,则可用一根过两铰心的链杆代替,视其为一根链杆的作用。2如果上部体系与大地的连接符合两刚片的规则,则可去掉与大地的约束,只分析上部体系。3通过依次从外部拆除二元体或从内部(基础、基本三角形)加二元体的方法,简化体系后再作分析。4杆件和约束不能重复利用。第三章
展开阅读全文