等腰三角形知识点+经典例题(DOC 7页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《等腰三角形知识点+经典例题(DOC 7页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰三角形知识点+经典例题DOC 7页 等腰三角形 知识点 经典 例题 DOC
- 资源描述:
-
1、第一讲 等腰三角形【要点梳理】 要点一、等腰三角形的定义1.等腰三角形有两条边相等的三角形,叫做等腰三角形,其中相等的两条边叫做腰,另一边叫做底,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.如图所示,在ABC中,ABAC,ABC是等腰三角形,其中AB、AC为腰,BC为底边,A是顶角,B、C是底角2.等腰三角形的作法 已知线段a,b(如图).用直尺和圆规作等腰三角形ABC,使AB=AC=b,BC=a.作法:1.作线段BC=a; 2.分别以B,C为圆心,以b为半径画弧,两弧 相交于点A; 3.连接AB,AC. ABC为所求作的等腰三角形3.等腰三角形的对称性 (1)等腰三角形是轴对称图形; (2
2、)BC; (3)BDCD,AD为底边上的中线.(4)ADBADC90,AD为底边上的高线.结论:等腰三角形是轴对称图形,顶角平分线(底边上的高线或中线)所在的直线是它的对称轴.4.等边三角形三条边都相等的三角形叫做等边三角形.也称为正三角形.等边三角形是一类特殊的等腰三角形,有三条对称轴,每个角的平分线(底边上的高线或中线)所在的直线就是它的对称轴.要点诠释:(1)等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角).A1802B,BC .(2)等边三角形与等腰三角形的关系:等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形.要点二、等腰三角形的性质1.等腰三角形
3、的性质性质1:等腰三角形的两个底角相等,简称“在同一个三角形中,等边对等角”推论:等边三角形的三个内角都相等,并且每个内角都等于60.性质2:等腰三角形的顶角平分线、底边上中线和高线互相重合.简称“等腰三角形三线合一”2.等腰三角形中重要线段的性质等腰三角形的两底角的平分线(两腰上的高、两腰上的中线)相等.要点诠释:这条性质,还可以推广到一下结论:(1)等腰三角形底边上的高上任一点到两腰的距离相等。(2)等腰三角形两底边上的中点到两腰的距离相等.(3)等腰三角形两底角平分线,两腰上的中线,两腰上的高的交点到两腰的距离相等,到底边两端上的距离相等.(4)等腰三角形顶点到两腰上的高、中线、角平分线
4、的距离相等.要点三、等腰三角形的判定定理1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这个三角形是等腰三角形.可以简单的说成:在一个三角形中,等角对等边. 要点诠释:(1)要弄清判定定理的条件和结论,不要与性质定理混淆判定定理得到的结论是等腰三角形,性质定理是已知三角形是等腰三角形,得到边和角关系.(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未判定它是一个等腰三角形2.等边三角形的判定定理三个角相等的三角形是等边三角形.有一个角是60的等腰三角形是等边三角形.3. 含有30角的直角三角形定理:在直角三角形中,如果一个锐角等于30,那么它所对的直角边等于斜边的一半.要点
5、四、反证法在证明时,先假设命题的结论不成立,然后从这个假设出发,经过逐步推导论证,最后推出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果,从而证明命题的结论一定成立,这种证明命题的方法叫做反证法.要点诠释:反证法也称归谬法,是一种间接证明的方法,一般适用于直接证明有困难的命题一般证明步骤如下:(1) 假定命题的结论不成立; (2) 从这个假设和其他已知条件出发,经过推理论证,得出与学过的概念、基本事实,以证明的定理、性质或题设条件相矛盾的结果; (3)由矛盾的结果,判定假设不成立,从而说明命题的结论是正确的.【典型例题】类型一、等腰三角形中有关角度的计算题例1、(2016春太
6、仓市期末)如图,已知ABC中,AB=BD=DC,ABC=105,求A,C度数【思路点拨】由于AB=BD=DC,所以ABD和BDC都是等腰三角形,可设C=CDB=x,则BDA=A=2x,根据等腰三角形的性质和三角形内角和定理的推论,可以求出A,C度数【答案与解析】解:AB=BD,BDA=A,BD=DC,C=CBD,设C=CBD=x,则BDA=A=2x,ABD=1804x,ABC=ABD+CDB=1804x+x=105,解得:x=25,所以2x=50,即A=50,C=25【总结升华】本题考查了等腰三角形的性质及三角形内角和定理;解题中运用了等腰三角形“等边对等角”的性质,并联系三角形的内角定理求解
7、有关角的度数问题【变式】已知:如图,D、E分别为AB、AC上的点,ACBCBD,ADAE,DECE,求B的度数【答案】解:ACBCBD,ADAE,DECE,设ECDEDC,BCDBDC,则AEDADE2,AB1804在ABC中,根据三角形内角和得,18041804180又A、D、B在同一直线上,2180由 ,解得36B180418014436.类型二、等腰三角形中的分类讨论例2、在等腰三角形中,有一个角为40,求其余各角【思路点拨】由一个等腰三角形内角为40,分别从40是等腰三角形顶角与40是底角的角度去分析求解即可求得答案【答案与解析】解:(1)当40的角为顶角时,由三角形内角和定理可知:两
展开阅读全文