书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型第十九章四边形知识点总结与典型例题(DOC 7页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5650880
  • 上传时间:2023-04-29
  • 格式:DOC
  • 页数:7
  • 大小:489KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第十九章四边形知识点总结与典型例题(DOC 7页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第十九章四边形知识点总结与典型例题DOC 7页 第十九 四边形 知识点 总结 典型 例题 DOC
    资源描述:

    1、第十九章四边形知识点总结与典型例题一、平行四边形的性质 1、平行四边形的定义: 有两组对边分别平行的四边形叫做平行四边形. 2、平行四边形的性质(包括边、角、对角线三方面) : 边:平行四边形的两组对边分别平行; 平行四边形的两组对边分别相等; 角:平行四边形的两组对角分别相等; 对角线:平行四边形的对角线互相平分.【补充】平行四边形的邻角互补;平行四边形是中心对称图形,对称中心是对角线的交点. 3、多边形的对角线: 从边形的一个顶点可以引 条对角线; 边形共有 条对角线. 4、正多边形:各个角都相等,各个边都相等的多边形叫做正多边形. 5、多边形的内角和与外角和: 多边形的内角和等于; 多边

    2、形的外角和等于.典型例题:1:多边形的内角和与外角和 1、若多边形的每个内角都为150,则从一个顶点引的对角线有( )A.7条 B.8条 C.9条 D.10条 2、如果一个四边形内角之比是2235,那么这四个内角中( )A.有两个钝角B.有两个直角 C.只有一个直角 D.只有一个锐角 3、一个多边形的外角和是内角和的一半,则它是边形( )A.7 B.6 C.5 D.4 4、若等角n边形的一个外角不大于40,则它是边形( )A.n=8 B.n=9 C.n9 D.n92:平行四边形的性质 5、如图,平行四边形ABCD中,AEBD,CFBD,垂足分别为E、F. 求证:BAE =DCF. 6、如图,在

    3、平行四边形中,为垂足,如果,那么的度数是( ) A. B. C.D.7、如图,在正五边形ABCDE中,连结AC,AD,则CAD的度数是 .二、平行四边形的判定 1、平行四边形的判定(包括边、角、对角线三方面):边:两组对边分别平行的四边形是平行四边形; 两组对边分别相等的四边形是平行四边形; 一组对边平行且相等的四边形是平行四边形;角:两组对角分别相等的四边形是平行四边形;对角线:对角线互相平分的四边形是平行四边形. 2、三角形中位线:连接三角形两边中点的线段叫做三角形的中位线. 3、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半. 4、平行线间的距离: 两条平行线中

    4、,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离。两条平行线间的距离处处相等。典型例题:3:平行四边形的判定 1如图,在平行四边形ABCD中,AEBD,CFBD,垂足分别为E、F求证:四边形AECF是平行四边形 2、如图,在ABCD中,对角线AC与BD交于点O,已知点E、F分别为AO、OC的中点,证明:四边形BFDE是平行四边形4:三角形中位线定理 1、如图,ABC中ACB=90,点D、E分别是AC,AB的中点,点F在BC的延长线上,且CDF=A.求证:四边形DECF是平行四边形. 三、矩形的性质 1、矩形的定义: 有一个角是直角的平行四边形叫做矩形. 2、矩形的性质:矩形具

    5、有平行四边形的所有性质;矩形的四个角都是直角;矩形的对角线相等;矩形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线的交点.典型例题:5:矩形的性质 1、矩形具有而一般平行四边形不具有的性质是 ( ) A. 对角相等 B. 对边相等 C. 对角线相等 D. 对角线互相平分2、如图,过矩形ABCD的对角线BD上一点K,分别作矩形两边的平行线MN与PQ,那么图中矩形AMKP的面积S1与矩形QCNK的面积S2的大小关系是S1( ) S2(填“”或“=”或“”)四、矩形的判定1、矩形的判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形; 有三个角是直角的四边形是矩

    6、形.2、证明一个四边形是矩形的步骤:方法一:先证明该四边形是平行四边形,再证一角为直角或对角线相等;方法二:若一个四边形中的直角较多,则可证三个角为直角.3、直角三角形斜边中线定理: 直角三角形斜边上的中线等于斜边的一半.典型例题:6矩形的判定 1、如图,在ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形求证:四边形ADCE是矩形. 2、已知:如图,四边形ABCD是由两个全等的正三角形ABD和BCD组成的,点M、N分别为AD、BC的中点求证:四边形BMDN是矩形7:直角三角形斜边中线定理3、如图,已知BD、CE分别是ABC的AC、BC边上的高,G、F分别是BC、DE的中点求证:G

    7、FDE五、菱形的性质 1、菱形的定义: 有一组邻边相等的平行四边形叫做菱形. 2、菱形的性质: 菱形具有平行四边形的所有性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角; 菱形既是轴对称图形,又是中心对称图形,有两条对称轴,对称中心是对角线交点. 3、菱形的面积公式:菱形的两条对角线的长分别为,则典型例题:8:菱形的性质1、如图,已知菱形ABCD的边长为4cm,BAD=120,对角线AC、BD相交于点O,试求这个菱形的两条对角线AC与BD的长9:菱形的面积公式2、菱形ABCD的对角线交于O点,AC=16cm,BD=12cm求菱形ABCD的高 六、菱形的判定

    8、1、菱形的判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四条边都相等的四边形是菱形. 2、证明一个四边形是菱形的步骤:方法一:先证明它是一个平行四边形,然后证明“一组邻边相等”或“对角线互相垂直”;方法二:直接证明“四条边相等”.典型例题:10:菱形的判定 1、如图所示,已知ABCD,AC,BD相交于点O,添加一个条件使平行四边形为菱形,添加的条件为_(只写出符合要求的一个即可)2如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DEAC,过点C作CEBD,DE与CE相交于点E.(1)四边形OCED是什么图形?请证明你的结论;(2)连接OE,若AC=6,BD=

    9、8,求OE的长. 七、正方形的性质 1、正方形的定义: 有一组邻边相等且有一个角是直角的平行四边形叫做正方形. 2、正方形的性质: 正方形具有平行四边形、矩形、菱形的所有性质,即正方形的四条边都相等;四个角都是直角;对角线互相垂直平分且相等,并且每条对角线平分一组对角. 3、正方形既是轴对称图形,又是中心对称图形,它有四条对称轴,对角线的交点是对称中心.典型例题:11:正方形的性质 1、下列性质中,平行四边形、矩形、菱形、正方形都具有的是() A对角线互相平分 B对角线互相垂直C对角线相等 D对角线互相垂直且相等 八、正方形的判定 1、正方形的判定: 有一组邻边相等且有一个角是直角的平行四边形是正方形; 有一组邻边相等的矩形是正方形; 对角线互相垂直的矩形是正方形; 有一个角是直角的菱形是正方形; 对角线相等的菱形是正方形; 对角线互相垂直平分且相等的四边形是正方形.典型例题:12:正方形的判定 1、四边形ABCD的对角线AC=BD,ACBD,分别过A、B、C、D作对角线的平行线,所成的四边形EFMN是() A正方形 B菱形 C矩形 D任意四边形2如图,在矩形ABCD中,M、N分别为AD、BC的中点, E、F分别是BM、CM的中点.(1)求证:四边形MENF是菱形;(2)当AD与AB满足什么数量关系时,四边形MENF是正方形?说明理由.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第十九章四边形知识点总结与典型例题(DOC 7页).doc
    链接地址:https://www.163wenku.com/p-5650880.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库