解直角三角形及其应用(教师版)知识点+详细答案(DOC 21页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《解直角三角形及其应用(教师版)知识点+详细答案(DOC 21页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解直角三角形及其应用教师版知识点+详细答案DOC 21页 直角三角形 及其 应用 教师版 知识点 详细 答案 DOC 21
- 资源描述:
-
1、解直角三角形及其应用 【学习目标】1了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形; 2会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题 【要点梳理】 要点一、解直角三角形 在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形. 在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角. 设在RtABC中,C=90,A、B、C所对的边分别为a、b、c,则有:三边之间的关系:a2+b2=c2(勾股定理).锐角之间的关系:A+B=90.边角之间的关系:, ,. ,h为斜边上的高.要点诠释: (1)直角三角形中
2、有一个元素为定值(直角为90),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系). (3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解. 要点二、解直角三角形的常见类型及解法已知条件 解法步骤由两直角边(a,b) 求A,B=90A,两边 由RtABC斜边,一直角边(如c,a)求A,B=90A,B=90A,锐角、邻边(如A,b),一一直角边和一锐角B=90A,边一角锐角、对边(如A,a),B=90A,斜边、锐角(如c,A) ,要点诠释: 1在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未
3、知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边. 要点三、解直角三角形的应用 解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键. 解这类问题的一般过程是: (1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题. (3)根据直角三角形(或通过作垂线构造
4、直角三角形)元素(边、角)之间的关系解有关的直角三角形. (4)得出数学问题的答案并检验答案是否符合实际意义,得出实际 问题的解. 拓展: 在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示. 坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=的形式. (2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图. (3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图中,目标方向PA,PB,PC的方位角分别为是40,135,245. (4)
5、方向角:指北或指南方向线与目标方向线所成的小于90的水平角,叫做方向角,如图中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30,南偏东45,南偏西80,北偏西60.特别如:东南方向指的是南偏东45,东北方向指的是北偏东45,西南方向指的是南偏西45,西北方向指的是北偏西45.要点诠释: 1解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图. 2非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择
6、合适的方法求解.【典型例题】类型一、解直角三角形1在RtABC中,C90,a、b、c分别是A、B、C的对边,根据下列条件,解这个直角三角形 (1)B=60,a4; (2)a1,【答案】(1)A90B906030由知,由知,(2)由得B60, A90-6030 , 2如图所示,在RtABC中,C90,B30,b20,解这个直角三角形【答案】由C90知,A+B90,而B30, A90-3060又 , c40 由勾股定理知 ,举一反三:(1)已知a=2,b=2 ,求A、B和c;(2)已知sinA=, c=6 ,求a和b;【答案】(1)c=4;A=60、B=30; (2)a=4;b=类型二、解直角三角
7、形在解决几何图形计算问题中的应用3如图所示,BC是半圆O的直径,D是的中点,四边形ABCD的对角线AC、BD交于点E,(1)求证:ABEDBC; (2)已知BC,CD,求sinAEB的值;(3)在(2)的条件下,求弦AB的长【答案】(1) , 12, 又BC是O的直径, BACBDC90 ABEDBC (2)由ABEDBC, AEBDCB在RtBDC中,BC,CD, BD, sinAEBsinDCB(3)在RtBDC中,BD,又123,ADEBDA, AEDBAD , 又 , CD2(BDBE)BD,即, 在RtABE中,ABBEsinAEB举一反三: 如图,在ABC中,AC=12cm,AB=
8、16cm,sinA=(1)求AB边上的高CD;(2)求ABC的面积S;(3)求tanB【答案】(1)CD=4cm;(2)S=32 cm2;(3)tanB=.类型三、解直角三角形在解决实际生活、生产问题中的应用4某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为(i1:是指铅直高度DE与水平宽度CE的比),CD的长为10 m,天桥另一斜面AB的坡角ABC45(1)写出过街天桥斜面AB的坡度;(2)求DE的长; (3)若决定对该过街天桥进行改建,使AB斜面的坡度变缓,将其45坡角改为30,方便过路群众,改建后斜面为AF,试计算此改建需占路面的宽度FB的长(结果精确到.0.01 m)【答案
9、】(1)作AGBC于G,DEBC于E, 在RtAGB中,ABG45,AGBG AB的坡度(2)在RtDEC中, , C30 又 CD10 m (3)由(1)知AGBG5 m,在RtAFG中,AFG30, ,即,解得答:改建后需占路面的宽度FB的长约为3.66 m5腾飞中学在教学楼前新建了一座“腾飞”雕塑为了测量雕塑的高度,小明在二楼找到一点C,利用三角板测得雕塑顶端A点的仰角为30,底部B点的俯角为45,小华在五楼找到一点D,利用三角板测得A点的俯角为60(如图所示)若已知CD为10米,请求出雕塑AB的高度(结果精确到0.1米,参考数据1.73)【答案】过点C作CEAB于E D906030,A
展开阅读全文