第二十章数据的分析知识点总结与典型例题91193(DOC 21页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第二十章数据的分析知识点总结与典型例题91193(DOC 21页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二十章数据的分析知识点总结与典型例题91193DOC 21页 第二十 数据 分析 知识点 总结 典型 例题 91193 DOC 21
- 资源描述:
-
1、目录一、数据的代表1考向1:算数平均数2考向2:加权平均数2考向3:中位数4考向4:众数5二、数据的波动6考向5:极差6考向6:方差8三、统计量的选择10考向7:统计量的选择10数据的分析知识点总结与典型例题一、数据的代表 1、算术平均数:把一组数据的总和除以这组数据的个数所得的商.公式:使用:当所给数据,中各个数据的重要程度相同时,一般使用该公式计算平均数. 2、加权平均数:若个数,的权分别是,则,叫做这个数的加权平均数.使用:当所给数据,中各个数据的重要程度(权)不同时,一般选用加权平均数计算平均数.权的意义:权就是权重即数据的重要程度.常见的权:1)数值、2)百分数、3)比值、4)频数等
2、。 3、组中值:(课本P128) 数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,统计中常用各组的组中值代表各组的实际数据. 4、中位数: 将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 意义:在一组互不相等的数据中,小于和大于它们的中位数的数据各占一半. 5、众数: 一组数据中出现次数最多的数据就是这组数据的众数. 特点:可以是一个也可以是多个. 用途:当一组数据中有较多的重复数据时,众数往往是人们所关心的一个量. 6、平均数、中位数、众数的区别:
3、 平均数能充分利用所有数据,但容易受极端值的影响;中位数计算简单,它不易受极端值的影响,但不能充分利用所有数据;当数据中某些数据重复出现时,人们往往关心众数,但当各个数据的重复次数大致相等时,众数往往没有意义.典型例题:考向1:算数平均数 1、数据-1,0,1,2,3的平均数是(C) A-1 B0C1D5 2、样本数据3、6、x、4、2的平均数是5,则这个样本中x的值是(B)A5 B10 C13 D15 3、一组数据3,5,7,m,n的平均数是6,则m,n的平均数是(C)A6 B7 C7.5 D15 4、若n个数的平均数为p,从这n个数中去掉一个数q,余下的数的平均数增加了2,则q的值为(A)
4、Ap-2n+2 B2p-n C2p-n+2 Dp-n+2思路点拨:n个数的总和为np,去掉q后的总和为(n-1)(p+2),则q=np-(n-1)(p+2)=p-2n+2故选A 5、已知两组数据x1,x2,xn和y1,y2,yn的平均数分别为2和-2,则x1+3y1,x2+3y2,xn+3yn的平均数为(A)A-4 B-2 C0 D2考向2:加权平均数 6、如表是10支不同型号签字笔的相关信息,则这10支签字笔的平均价格是(C)A1.4元 B1.5元 C1.6元 D1.7元7、对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇
5、形统计图根据图中信息,这些学生的平均分数是(C)A2.2 B2.5 C2.95 D3.0 思路点拨:参加体育测试的人数是:1230%=40(人),成绩是3分的人数是:4042.5%=17(人),成绩是2分的人数是:40-3-17-12=8(人),则平均分是:(分) 8、为了调查某一路口某时段的汽车流量,记录了15天同一时段通过该路口的汽车辆数,其中有2天是142辆,2天是145辆,6天是156辆,5天是157辆,那么这15天通过该路口汽车平均辆数为(C) A146 B150 C153 D16009、某校为了了解学生的课外作业负担情况,随机调查了50名学生,得到他们在某一天各自课外作业所用时间的
6、数据,结果用右面的条形图表示,根据图中数据可得这50名学生这一天平均每人的课外作业时间为(B)A0.6小时 B0.9小时 C1.0小时 D1.5小时 10、某学校举行理科(含数学、物理、化学、生物四科)综合能力比赛,四科的满分都为100分甲、乙、丙三人四科的测试成绩如下表:综合成绩按照数学、物理、化学、生物四科测试成绩的1.2:1:1:0.8的比例计分,则综合成绩的第一名是(A)A甲 B乙 C丙 D不确定 11、某班四个学习兴趣小组的学生分布如图,现通过对四个小组学生寒假期间所读课外书情况进行调查,并制成各小组读书情况的条形统计图,根据统计图中的信息:这四个小组平均每人读书的本数是(C)A4
7、B5 C6 D7 12、某次射击训练中,一小组的成绩如下表所示: 若该小组的平均成绩为8.7环,则成绩为9环的人数是(D)A1人 B2人 C3人 D4人思路点拨:设成绩为9环的人数为x,则有7+83+9x+102=8.7(1+3+x+2),解得x=4故选D 13、下表中若平均数为2,则x等于(B) A0 B1 C2 D3 考向3:中位数 14、在数据1、3、5、5、7中,中位数是(C)A3 B4 C5 D7 15、六个数6、2、3、3、5、10的中位数为(B) A3 B4 C5D6 16、已知一组数据:-1,x,1,2,0的平均数是1,则这组数据的中位数是(A) A1 B0 C-1 D2 思路
8、点拨:-1,x,1,2,0的平均数是1,(-1+x+1+2+0)5=1,解得:x=3,将数据从小到大重新排列:-1,0,1,2,3最中间的那个数数是:1,中位数是:1 17、若四个数2,x,3,5的中位数为4,则有(C) Ax=4 Bx=6 Cx5 Dx5 思路点拨:找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求。如果是偶数个则找中间两位数的平均数。故分情况讨论x与其他三个数的大小. 18、某市一周每天最高气温(单位:)情况如图所示,则这组表示最高气温数据的中位数( B ) A22 B24 C25 D27 思路点拨:把这组数据从小到
9、大排列为:20,22,22,24,25,26,27,最中间的数是24,则中位数是24;故选B 19、为了解九年级学生的视力情况,某校随机抽取50名学生进行视力检查,结果如下:这组数据的中位数是(B)A4.6 B4.7 C4.8 D4.9思路点拨:共有50名学生,中位数是第25和26个数的平均数,这组数据的中位数是(4.7+4.7)2=4.7;故选B 20、已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是(A) Aa13,b=13 Ba13,b13 Ca13,b
10、13 Da13,b=13 思路点拨:原来的平均数是13岁,1323=299(岁),正确的平均数a=13,人数为23人,是奇数。原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,b=13;故选A考向4:众数 21、有一组数据:1,3,3,4,5,这组数据的众数为(B) A1 B3 C4 D5 22、若一组数据8,9,10,x,6的众数是8,则这组数据的中位数是(B) A6 B8 C8.5 D9 23、某中学随机调查了15名学生,了解他们一周在校参加体育锻炼时间,列表如下: 则这15名同学一周在校参加体育锻炼时间的中位数和众数分别是(D) A6,7 B7,7 C7,6 D6,6 思路点
展开阅读全文