高中数学会考复习学案全集(DOC 42页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高中数学会考复习学案全集(DOC 42页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学会考复习学案全集DOC 42页 高中数学 会考 复习 全集 DOC 42 下载 _其他_数学_高中
- 资源描述:
-
1、1必修一集合(一)知识梳理:1、集合(1)集合中元素的性质:_ 、_ 、_(2)常用数集的符号表示:自然数集 ;正整数集 、 ;整数集 ;有理数集 、实数集 。(3)集合的表示法: _, _, _ 。2、集合之间的关系(1)子集: (2)真子集:3、集合之间的运算(1)交集 (2)并集 (3)补集4、重要性质和结论(1); ; ;(2) 空集是 的子集,是 的真子集。(3) 设有限集合A中有n个元素,则A的子集个数有_个,其中真子集的个数为_个,非空子集个数为_个,非空真子集个数为_个(二)例题讲解考点1:集合、元素之间的关系例1(a级)、设集合M=-2,0,2,N=0,则 ( ) AN为空集
2、 BNM CNM DMN 例2(b级)、数集P=x|x=2k1,kN,Q=x|x=4k1, kN ,则P、Q之间的关系为_例3(b级)、已知集合,若,求实数的取值范围。变式:改,求实数的取值范围。考点2:集合之间的运算例4(a级)、设集合M=1,2,3,4,5,集合N=,MN=( )A B1,2 C1,2,3 D例5、(a级)已知,求和例6、(b级)、已知集合A,B,且,求实数的值组成的集合。(三)练习巩固:一、选择题:1、已知集合M=1,3,5,则它的非空真子集的个数为 ( ) A.8个 B.5个 C.6个 D.7个2、已知M=,N=,则 ( ) 3、设集合A,那么下列关系正确的是 ( )A
3、BC D4、已知集合,则的元素个数是 ( )A个 B个C个D个5、已知集合,若,则 ( )A BCD不能确定6、已知全集I=1,2,3,4,5,6,A=1,2,3,4,B=3,4,5,6,那么CI (AB)= ( ) A3,4 B1,2,5,6 C1,2,3,4,5,6 D7、已知集合,那么集合为( )ABCD二、填空题:8、用列举法表示集合:= 9、图中阴影部分的集合表示正确的有_.(1) (2)(3) (4)10、若P=x|x=2k,kZ,Q=x|x=2n1,nZ,则PQ= _11、某班43人,其中数学得优秀的有20人,物理得优秀的有15人,数理两门均优秀的有10人,则两门都没得优秀的有_
4、人 12、已知集合A=x|x5,B=x|xm。若AB=R,则m的范围是_三、解答题:13、集合A=x|x2+3x+2=0,B=x|x2+(m+1)x+m=0,若,求m的值。2函数的概念(必修一)【考点及要求】了解函数三要素,映射的概念,函数三种表示法,分段函数 【基础知识】函数的概念: 函数三要素: 函数的表示法: 【基本训练】 1 已知函数,且,2 设是集合到(不含2)的映射,如果,则3 函数的定义域是 4 函数的定义域是 5 函数的值域是 6的值域为_ ; 的值域为_;【典型例题讲练】例1已知:,则练习1:已知,求练习2:已知是一次函数,且,求的解析式例2 函数的定义域是 例3求下列函数的
5、值域(1) (2) (3) 【课堂检测】1下列四组函数中,两函数是同一函数的有 组 (1)(x)=与(x)=x; (2) (x)=与(x)=x(3) (x)=x与(x)=; (4) (x)= 与(x)= ;2设,则ff(1)= 3函数的定义域是 4函数y=f(x)的定义域为-2,4则函数,g(x)=f(x)+f(-x)的定义域为 。5已知:,则6函数的值域是 7设函数,则的最小值为 3函数的性质(必修一)【基础知识】1函数单调性:一般地,设函数的定义域为,区间,如果对于区间内任意两个自变量,当时,若 则在区间上是增函数,若 则在区间上是增函数2若函数在区间上是增函数或减函数,则称函数在这一区间
6、具有(严格的) ,区间叫做的 3 偶函数:如果对函数的定义域内 都有 ,那么称函数是偶函数。其图象关于 对称。奇函数:如果对函数的定义域内 都有 ,那么称函数是奇函数。其图象关于 对称。【典型例题讲练】例1已知函数 试确定函数的单调区间,并证明你的结论练习 证明函数在上递减例2已知函数在2,+是增函数,求实数的范围练习: 已知函数在区间上是增函数,求的范围例3画出函数的图像, 练习:画出函数的图像,并指出单调区间并指出单调区间例4判断下列函数的奇偶性(1) (2) (3) 练习:判断下列函数的奇偶性(1); (2)例6(2010模拟精选题)已知yf(x)是定义在(2,2)上的增函数,若f(m1
7、)f(12m),则m的取值范围是_例7已知yf(x)是定义域为R的奇函数,当x0时,f(x)x22x.求f(x)在R上的解析式【章节强化训练】1函数f(x)=4x2mx5在区间2,上是增函数,在区间(,2)上是减函数,则f(1)等于( )A7B1C17D252函数 的增区间是( )。A B C D 3. 设偶函数的定义域为,当时,是增函数,则 ,的大小关系是 ( )A B C D 4已知偶函数在区间单调递增,则满足的x 取值范围是A(,) B(,) C(,) D6若函数是奇函数,当x0时f(x)的解析式是 4二次函数(必修一)1函数 叫做二次函数,它的定义域是R.2二次函数的三种表示形式 一般
8、式: ;顶点式: ,其中 为抛物线的顶点坐标; 两根式: 3.设一元二次方程的两根为且,则相应的不等式的解集的各种情况如下表:二次函数()的图象【典型例题讲练】例1已知二次函数f(x)满足f(2)1,f(1)1,且f(x)的最大值是8,试确定此二次函数的解析式练习若二次函数f(x)满足f(x1)f(x)2x,且f(0)1,则f(x)的表达式为()Af(x)x2x1 Bf(x)x2x1Cf(x)x2x1 Df(x)x2x1例2求二次函数在下列区间的最值,_,_;.,_,_.例3函数f(x)x22ax1a在区间0,1上有最大值2,求实数a的值变式训练:设函数f(x)x22x2在xt,t1上的最小值
9、为g(t),求g(t)的表达式(2010山东潍坊模拟)已知1,3是函数yx24ax的单调递减区间,则实数a的取值范围是()A. B. C. D.5指数与对数(必修一)【基础知识】1.指数幂: 0的正分数指数幂是 ,0的负分数指数幂无意义。有理数指数幂的运算法则:=_;=_;=_;=_2.对数的概念:如果(),那么x叫做以a为底N的对数,记作x=_, 其中a叫做_,N叫做_。以_为底的对数叫做常用对数,记作_ _;以_为底的对数叫做自然对数,记作_对数的性质:底的对数等于1:;1的对数等于0:;对数的运算法则:如果,那么积的对数:_; 商的对数:_;幂的对数:_;_;_ 补充:=_ 换底公式:=
10、_【典型例题讲练】例11 2 练习:1= 2 例1 化简= 练习: 化简例2已知,求练习:已知,则例3已知,求下列 (1) (2) 的值。练习:已知,求的值例4=练习:(1)(2)=【章节强化训练】1 设,则的大小关系为2. 34= 5的值为 67若,则 6指数函数图象和性质(必修一)【考点及要求】:1.理解指数函数的概念和意义;理解指数函数的性质,会画指数函数的图象.2.了解指数函数模型的实际案例,会用指数函数模型解决简单的实际问题【基础知识】:(1)一般地,函数_叫做指数函数,其中x是_,函数的定义域是_.(2)一般地,指数函数的图象与性质如下表所示:图象定义域值域性质(1)过定点( )(
11、2)当时,_; 时_.(2)当时,_;时_.(3)在( )上是_(3)在( )上是_(3)复利公式:若某种储蓄按复利计算利息,如果本金为元,每期利率为,设存期是的本利和(本金+利息)为元,则=.【典型例题讲练】例1 比较下列各组值的大小:(1)1.72.5 与 1.73 (2) 0.99.1 与 1.90.9练习 :将三个数,按从小到大的顺序排列起来例2求下列函数的定义域、值域: 例3 求函数的单调区间(用复合函数的单调性):变式训练:求函数的单调增区间3 .【章节强化训练】:1. 函数的值域是( )2.下列关系式中正确的是( )A B. C. D. 3函数y=3|x|的图象是( )4 +2的
12、定义域是_,值域是_, 在定义域上,该函数单调递.5若函数的图象恒过定点 .6的单调递减区间是7对数函数的图象和性质(必修一)【基础知识】1一般地,我们把函数_叫做对数函数,其中x是自变量,函数的定义域是_2.对数函数的图象与性质图象定义域值域性质(1)过定点( )(2)当时,_当时_(2)当时,_当时_(3)在_是增函数(3)在_是减函数【典型例题讲练】例1 求函数的递减区间. 练习 求函数的单调区间和值域.例2画出函数的图像,并根据图像写出函数的单调区间变式训练:1已知,则的大小关系 2方程的实根的个数为 例3利用对数函数的单调性,比较下列各组数的大小(1) ; (2) ;变式训练:比较大
13、小例4:求下列函数的定义域、值域:(1) (2) 【课堂检测】1.三个数,的大小关系是( )A BC D 2. 已知yloga(2x)是x的增函数,则a的取值范围是()A、(0, 2)B、(0, 1)C、(1, 2)D、(2, )3.已知,那么用表示是 ( )A、 B、 C、 D、 4.函数的递增区间是( )A.(-1,3 B.1,3) C.(-,1 D.1,+)5. 函数y= | lg(x-1)| 的图象是 ( )C8空间几何体(必修二)【基础知识】1多面体(1)棱柱:有两个面 ,其余各面都是四边形,并且每相邻两个四边形的公共边都 ,由这些面所围成的几何体叫棱柱(2)棱锥:有一个面是多边形,
展开阅读全文