相似形与相似三角形专题复习(精编题目)剖析(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《相似形与相似三角形专题复习(精编题目)剖析(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 相似形与相似三角形专题复习精编题目剖析DOC 19页 相似形 相似 三角形 专题 复习 精编 题目 剖析 DOC 19
- 资源描述:
-
1、初二升初三衔接 余美霓讲义 第一节 :相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。 2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。1几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知abc, A D a B E b C F c 可得 等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例. A D E B C 由DEBC可得:.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的
2、两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边. 此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例. (5)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。 比例线段:四条线段a,b,c,d中,如果a与b的比等于c与d的比,即,那么这四条线段a,b,c,d叫做成比例线段,简称比例线段。2比例的有关性质比例的基本性质:如果,那么ad=bc。如果ad=bc(a,b,c,d都不等于0),那么。合比性质:如果,那么。等比性质:如果=(b+d+
3、n0),那么b是线段a、d的比例中项,则b2ad.典例剖析例1: 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm,则它的实际长度约为_Km. 若 = 则=_. 若 = 则a:b=_.3 相似三角形的判定(1) 如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。(2) 两边对应成比例并且它们的夹角也相等的两个三角形相似。(3) 三边对应成比例的两个三角形相似。补充:相似三角形的识别方法(1)定义法:三角对应相等,三边对应成比例的两个三角形相似。(2)平行线法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。注意:适
4、用此方法的基本图形,(简记为A型,X型)(3)三边对应成比例的两个三角形相似。(4)两边对应成比例并且它们的夹角也相等的两个三角形相似。(5)两角对应相等的两个三角形相似。(6)一条直角边和斜边长对应成比例的两个直角三角形相似。(7)被斜边上的高分成的两个直角三角形与原直角三角形相似。【基础练习】(1)如图1,当 时,ABC ADE(2)如图2,当 时, ABC AED。(3)如图3,当 时, ABC ACD。小结:以上三类归为基本图形:母子型或A型(3)如图4,如图1,当ABED时,则 。 (4)如图5,当 时,则 。小结:此类图开为基本图开:兄弟型或X型典例剖析例1:判断所有的等腰三角形都
5、相似 ( )所有的直角三角形都相似 ( )所有的等边三角形都相似 ( )所有的等腰直角三角形都相似 ( )例2:如图,ABC中,AD是BAC的平分线,AD的垂直平分线交AD于E,交BC的延长线于F求证: ABF CAF.例3:如图:在Rt ABC中, ABC=90,BDAC于D,若 AB=6 ;AD=2; 则AC= ;BD= ;BC= ;例3:如图:在Rt ABC中, ABC=90,BDAC于D ,若E是BC中点,ED的延长线交BA的延长线于F,求证:AB : AC=DF : BF 第二节:相似三角形的判定 (一)相似三角形:定义1、对应角相等,对应边成比例的两个三角形,叫做相似三角形温馨提示
6、:当且仅当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;相似三角形的特征:形状一样,但大小不一定相等;对应中线之比、对应高之比、对应角平线之比等于相似比。两个钝角三角形是否相似,首先要满足两个钝角相等的条件。2、相似三角形对应边的比叫做相似比温馨提示:全等三角形一定是相似三角形,其相似比k=1所以全等三角形是相似三角形的特例其区别在于全等要求对应边相等,而相似要求对应边成比例相似比具有顺序性例如ABCABC的对应边的比,即相似比为k,则ABCABC的相似比,当且仅当它们全等时,才有k=k=
7、1相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形4、相似三角形的预备定理:如果一条直线平行于三角形的一条边,且这条直线与原三角形的两条边(或其延长线)分别相交,那么所构成的三角形与原三角形相似温馨提示:定理的基本图形有三种情况,如图其符号语言:DEBC,ABCADE;这个定理是用相似三角形定义推导出来的三角形相似的判定定理它不但本身有着广泛的应用,同时也是证明下节相似三角形三个判定定理的基础,故把它称为“预备定理”;有了预备定理后,在解题时
8、不但要想到上一节“见平行,想比例”,还要想到“见平行,想相似”(二)相似三角形的判定1、相似三角形的判定:判定定理(1):两角对应相等,两三角形相似判定定理(2):两边对应成比例且夹角相等,两三角形相似判定定理(3):三边对应成比例,两三角形相似温馨提示:有平行线时,用上节学习的预备定理;已有一对对应角相等(包括隐含的公共角或对顶角)时,可考虑利用判定定理1或判定定理2;已有两边对应成比例时,可考虑利用判定定理2或判定定理3但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等例1.如图三角形ABC中,点E为BC的中点,过点E作一条直线交AB于D点,与AC的延长线将于F点,
9、且FD=3ED,求证:AF=3CF2、直角三角形相似的判定:斜边和一条直角边对应成比例,两直角三角形相似温馨提示:由于直角三角形有一个角为直角,因此,在判定两个直角三角形相似时,只需再找一对对应角相等,用判定定理1,或两条直角边对应成比例,用判定定理2,一般不用判定定理3判定两个直角三角形相似;如图是一个十分重要的相似三角形的基本图形,图中的三角形,可称为“母子相似三角形”,其应用较为广泛如图,可简单记为:在RtABC中,CDAB,则ABCCBDACD直角三角形的身射影定理:AC2=AD*AB CD2=AD*BD BC2=BD*AB总结:寻找相似三角形对应元素的方法与技巧正确寻找相似三角形的对
10、应元素是分析与解决相似三角形问题的一项基本功通常有以下几种方法:(1)相似三角形有公共角或对顶角时,公共角或对顶角是最明显的对应角;相似三角形中最大的角(或最小的角)一定是对应角;相似三角形中,一对相等的角是对应角,对应角所对的边是对应边,对应角的夹边是对应边;(2)相似三角形中,一对最长的边(或最短的边)一定是对应边;对应边所对的角是对应角;对应边所夹的角是对应角2、常见的相似三角形的基本图形:学习三角形相似的判定,要与三角形全等的判定相比较,把证明三角形全等的思想方法迁移到相似三角形中来;对一些出现频率较高的图形,要善于归纳和记忆;对相似三角形的判定思路要善于总结,形成一整套完整的判定方法
11、如:(1)“平行线型”相似三角形,基本图形见上节图“见平行,想相似”是解这类题的基本思路;(2)“相交线型”相似三角形,如上图其中各图中都有一个公共角或对顶角“见一对等角,找另一对等角或夹等角的两边成比例”是解这类题的基本思路;(3)“旋转型”相似三角形,如图若图中1=2,B=D(或C=E),则ADEABC,该图可看成把第一个图中的ADE绕点A旋转某一角度而形成的第三节 相似三角形中的辅助线一、作平行线例1. 如图,的AB边和AC边上各取一点D和E,且使ADAE,DE延长线与BC延长线相交于F,求证: 例2. 如图,ABC中,ABAC,在AB、AC上分别截取BD=CE,DE,BC的延长线相交于
12、点F,证明:ABDF=ACEF。 二、作垂线例3. 如图从 ABCD顶点C向AB和AD的延长线引垂线CE和CF,垂足分别为E、F,求证:。 三、作延长线例4. 如图,在梯形ABCD中,ADBC,若BCD的平分线CHAB于点H,BH=3AH,且四边形AHCD的面积为21,求HBC的面积。 例5. 如图,RtABC中,CD为斜边AB上的高,E为CD的中点,AE的延长线交BC于F,FGAB于G,求证:FG=CFBF 四、作中线例6 如图,中,ABAC,AEBC于E,D在AC边上,若BD=DC=EC=1,求AC。 五、过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡
展开阅读全文