高三数学一轮复习-函数(Ⅵ)单元练习题(DOC 10页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三数学一轮复习-函数(Ⅵ)单元练习题(DOC 10页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三数学一轮复习-函数单元练习题DOC 10页 数学 一轮 复习 函数 单元 练习题 DOC 10 下载 _一轮复习_高考专区_数学_高中
- 资源描述:
-
1、高三数学单元练习题:函数()第卷一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共12个小题,每小题5分,共60分).1已知 是上的增函数,那么 a 的取值范围是( )A(0,1)B(0,) C, D2函数的定义域是( )A B C D3已知函数,对任意的两个不相等的实数,都有 成立,且,则的值是( )A0 B1 C2006! D(2006!)24偶函数 在 上单调递增,则 与 的大小 关系是( )AB C D 5函数ylog(x26x17)的值域是()ARB8, C(,3D3,6已知函数满足,对于任意的实数都满足,若,则函数的解析式为
2、( )A BC D7在下列四个函数中,满足性质:“对于区间(1,2)上的任意,( ). 恒成立”的只有( )A B C D8定义在(,+)上的奇函数f(x)和偶函数g(x)在区间(,0上的图像关于 x轴对称,且f(x)为增函数,则下列各选项中能使不等式f(b)f(a)g(a) g(b)成立的是( )Aab0Bab0Dab0,使对一切实数x均成立,则称为F函数给出下列函数:;是定义在R上的奇函数,且满足对一切实数x1、x2均有 其中是F函数的序号为_.16汽车在行驶过程中,汽油平均消耗率g(即每小时的汽油耗油量,单位:L/h)与汽车行驶的平均速度v(单位:km/h)之间有所示的函数关系: “汽油
3、的使用率最高”(即每千米汽油平均消耗量最小,单位:L/km),则汽油的使用率最高时,汽车速度是 (L/km).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6个大题,共74分)。17(12分)设函数是奇函数(都是整数,且,. (1)求的值; (2)当,的单调性如何?用单调性定义证明你的结论18(12分)已知二次函数 (1)若abc,且f(1)=0,证明f(x)的图象与x轴有2个交点; (2)在(1)的条件下,是否存在mR,使池f(m)= a成立时,f(m+3)为正数,若 存在,证明你的结论,若不存在,说明理由; (3)若对,方程有2个不等实根,19(12分)设函数,且在闭区间0,
4、7上,只有 (1)试判断函数的奇偶性; (2)试求方程在闭区间2005,2005上的根的个数,并证明你的结论20(12分)对1个单位质量的含污物体进行清洗, 清洗前其清洁度(含污物体的清洁度定义为:为, 要求清洗完后的清洁度为. 有两种方案可供选择, 方案甲: 一次清洗; 方案乙: 分两次清洗. 该物体初次清洗后受残留水等因素影响, 其质量变为. 设用单位质量的水初次清洗后的清洁度是, 用单位质量的水第二次清洗后的清洁度是, 其中是该物体初次清洗后的清洁度 (1)分别求出方案甲以及时方案乙的用水量, 并比较哪一种方案用水量较少; (2)若采用方案乙, 当为某固定值时, 如何安排初次与第二次清洗
5、的用水量, 使总用水量最小? 并讨论取不同数值时对最少总用水量多少的影响21(12分)已知函数 (1)求证:函数是偶函数; (2)判断函数分别在区间、上的单调性, 并加以证明; (3)若, 求证: 22(14分)设f(x)是定义在0, 1上的函数,若存在x*(0,1),使得f(x)在0, x*上单调递增,在x*,1上单调递减,则称f(x)为0, 1上的单峰函数,x*为峰点,包含峰点的区间为含峰区间 对任意的0,l上的单峰函数f(x),下面研究缩短其含峰区间长度的方法 (1)证明:对任意的x1,x2(0,1),x1x2,若f(x1)f(x2),则(0,x2)为含峰区间;若f(x1)f(x2),则
展开阅读全文