高三总复习直线与圆的方程知识点总结分析(DOC 9页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高三总复习直线与圆的方程知识点总结分析(DOC 9页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高三总复习直线与圆的方程知识点总结分析DOC 9页 高三总 复习 直线 方程 知识点 总结 分析 DOC
- 资源描述:
-
1、直线与圆的方程一、直线的方程1、倾斜角: L ,范围0, 若轴或与轴重合时,=00。2、斜率: k=tan 与的关系:=0=0已知L上两点P1(x1,y1) 0P2(x2,y2) =不存在 k= 当=时,=900,不存在。当时,=arctank,0时,=+arctank3、截距(略)曲线过原点横纵截距都为0。4、直线方程的几种形式已知方程说明几种特殊位置的直线斜截式K、bY=kx+b不含y轴和行平于y轴的直线x轴:y=0点斜式P1=(x1,y1) ky-y1=k(x-x1)不含y轴和平行于y轴的直线y轴:x=0两点式P1(x1,y1)P2(x2,y2)不含坐标辆和平行于坐标轴的直线平行于x轴:
2、y=b截距式a、b不含坐标轴、平行于坐标轴和过原点的直线平行于y轴:x=a过原点:y=kx一般式Ax+by+c=0A、B不同时为0两个重要结论:平面内任何一条直线的方程都是关于x、y的二元一次方程。任何一个关于x、y的二元一次方程都表示一条直线。5、直线系:(1)共点直线系方程:p0(x0,y0)为定值,k为参数y-y0=k(x-x0) 特别:y=kx+b,表示过(0、b)的直线系(不含y轴)(2)平行直线系:y=kx+b,k为定值,b为参数。AX+BY+入=0表示与Ax+By+C=0 平行的直线系BX-AY+入=0表示与AX+BY+C垂直的直线系(3)过L1,L2交点的直线系A1x+B1y+
3、C1+入(A2X+B2Y+C2)=0(不含L2)6、三点共线的判定:,KAB=KBC,写出过其中两点的方程,再验证第三点在直线上。二、两直线的位置关系1、L1:y=k1x+b1L2:y=k2x+b2L1:A1X+B1Y+C1=0L2:A2X+B2Y+C2=0L1与L2组成的方程组平行K1=k2且b1b2无解重合K1=k2且b1=b2有无数多解相交K1k2有唯一解垂直K1k2=-1A1A2+B1B2=0(说明:当直线平行于坐标轴时,要单独考虑)2、L1到L2的角为0,则()3、夹角:4、点到直线距离:(已知点(p0(x0,y0),L:AX+BY+C=0)两行平线间距离:L1=AX+BY+C1=0
4、 L2:AX+BY+C2=0与AX+BY+C=0平行且距离为d的直线方程为Ax+By+C与AX+BY+C1=0和AX+BY+C2=0平行且距离相等的直线方程是5、对称:(1)点关于点对称:p(x1,y1)关于M(x0,y0)的对称(2)点关于线的对称:设p(a、b)对称轴对称点对称轴对称点X轴Y=-xY轴X=m(m0)y=xy=n(n0)一般方法:如图:(思路1)设P点关于L的对称点为P0(x0,y0) 则 Kpp0KL=1P, P0中点满足L方程 解出P0(x0,y0)(思路2)写出过PL的垂线方程,先求垂足,然后用中点坐标公式求出P0(x0,y0)的坐标。PyL P0x(3)直线关于点对称
5、L:AX+BY+C=0关于点P(X0、Y0)的对称直线:A(2X0-X)+B(2Y0-Y)+C=0(4)直线关于直线对称几种特殊位置的对称:已知曲线f(x、y)=0关于x轴对称曲线是f(x、-y)=0 关于y=x对称曲线是f(y、x)=0关于y轴对称曲线是f(-x、y)=0 关于y= -x对称曲线是f(-y、-x)=0关于原点对称曲线是f(-x、-y)=0 关于x=a对称曲线是f(2a-x、y)=0关于y=b对称曲线是f(x、2b-y)=0一般位置的对称、结合平几知识找出相关特征,逐步求解。三、简单的线性规划 L Y 不等式表示的区域 O X AX+BY+C=0约束条件、线性约束条件、目标函数
展开阅读全文