集合基础知识点汇总与练习复习版(DOC 17页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《集合基础知识点汇总与练习复习版(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 集合基础知识点汇总与练习复习版DOC 17页 集合 基础 知识点 汇总 练习 复习 DOC 17
- 资源描述:
-
1、集合知识点总结一、集合的概念教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用:(一)主要知识:1集合、子集、空集的概念; 2集合中元素的3个性质,集合的3种表示方法;3若有限集有个元素,则的子集有个,真子集有,非空子集有个,非空真子集有个二、集合的运算教学目标:理解交集、并集、全集、补集的概念,掌握集合的运算性质,能利用数轴或文氏图进行集合的运算,进一步掌握集合问题的常规处理方法教学重点:交集、并集、补集的求法,集合语言、集合思想的运用(一)主要知识:1交集、并集、全集、补集的
2、概念; 2,;3,(二)主要方法:1求交集、并集、补集,要充分发挥数轴或文氏图的作用; 2含参数的问题,要有讨论的意识,分类讨论时要防止在空集上出问题;3集合的化简是实施运算的前提,等价转化常是顺利解题的关键考点要点总结与归纳一、集合有关概念1. 集合的概念:能够确切指定的一些对象的全体。2. 集合是由元素组成的集合通常用大写字母A、B、C,表示,元素常用小写字母a、b、c,表示。3. 集合中元素的性质:确定性,互异性,无序性。(1)确定性:一个元素要么属于这个集合,要么不属于这个集合,绝无模棱两可的情况。如:世界上最高的山(2)互异性:集合中的元素是互不相同的个体,相同的元素只能出现一次。如
3、:由HAPPY的字母组成的集合H,A,P,Y(3)无序性:集合中的元素在描述时没有固定的先后顺序。如:a,b,c和a,c,b是表示同一个集合4. 元素与集合的关系(1)元素a是集合A中的元素,记做aA,读作“a属于集合A”;(2)元素a不是集合A中的元素,记做aA,读作“a不属于集合A”。5. 集合的表示方法:自然语言法,列举法,描述法,图示法。(1)自然语言法:用文字叙述的形式描述集合。如大于等于2且小于等于8的偶数构成的集合。(2)列举法:把集合的元素一一列举出来,并用花括号“”括起来表示集合的方法,一般适用于元素个数不多的有限集,简单、明了,能够一目了然地知道集合中的元素是什么。注意事项
4、:元素间用逗号隔开;元素不能重复;元素之间不用考虑先后顺序;元素较多且有规律的集合的表示:0,1,2,3,100表示不大于100的自然数构成的集合。(3)描述法:用集合所含元素的共同特征表示集合的方法,一般形式是xI | p(x).注意事项:写清楚该集合中元素的代号;说明该集合中元素的性质;不能出现未被说明的字母;多层描述时,应当准确使用“且”、“或”;所有描述的内容都要写在集合符号内;语句力求简明、准确。(4)图示法:主要包括Venn图(韦恩图)、数轴上的区间等。韦恩图法:画一条封闭的曲线,用它的内部来表示一个集合的方法,常用于直观表示集合间的关系。6. 集合的分类:有限集:含有有限个元素的
5、集合无限集:含有无限个元素的集合空集 :不含任何元素的集合例:x|x2=5u 常用数集及其记法:(1)自然数集:又称为非负整数集,记做N; (2)正整数集:自然数集内排除0的集合,记做N+或N; (3)整数集:全体整数的集合,记做Z (4)有理数集:全体有理数的集合,记做Q (5)实数集:全体实数的集合,记做R二、集合间的基本关系7. 子集的概念:A中的任何一个元素都属于B。记作: 任何一个集合是它本身的子集。AA 如果 AB, BC ,那么 AC8. 空集:不含任何元素的集合叫做空集,记为规定: 空集是任何集合的子集;空集是任何非空集合的真子集。9. 相等集合:如果构成两个集合的元素一样,就
6、称这两个集合相等,与元素的排列顺序无关。如:且则A=B10. 真子集:如果AB,且A B那就说集合A是集合B真子集。记作:AB11. 集合间的基本关系1.“包含”关系子集注意:有两种可能(1)A是B的一部分、(2)A与B是同一集合。反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2“相等”关系:A=B (55,且55,则5=5)实例:设 A=x|x2-1=0 B=-1,1 “元素相同则两集合相等”12. 若有限集有个元素,则的子集有个,真子集有,非空子集有个,非空真子集有个三、集合的运算1、交集: 2、并集:3、补集:运算类型交 集并 集补 集定 义由所有属于A且属于B的元素
展开阅读全文