书签 分享 收藏 举报 版权申诉 / 75
上传文档赚钱

类型特岗数学专业知识总复习(DOC 72页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5643501
  • 上传时间:2023-04-28
  • 格式:DOC
  • 页数:75
  • 大小:4.17MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《特岗数学专业知识总复习(DOC 72页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    特岗数学专业知识总复习DOC 72页 数学 专业知识 复习 DOC 72
    资源描述:

    1、特岗教师考试数学专业知识总复习题纲集合一、复习要求1、 理解集合及表示法,掌握子集,全集与补集,子集与并集的定义;2、 掌握含绝对值不等式及一元二次不等式的解法;3、 理解逻辑联结词的含义,会熟练地转化四种命题,掌握反证法;4、 理解充分条件,必要条件及充要条件的意义,会判断两个命题的充要关系; 5、学会用定义解题,理解数形结合,分类讨论及等价变换等思想方法。二、学习指导 1、集合的概念:(1) 集合中元素特征,确定性,互异性,无序性;(2) 集合的分类: 按元素个数分:有限集,无限集; 按元素特征分;数集,点集。如数集y|y=x2,表示非负实数集,点集(x,y)|y=x2表示开口向上,以y轴

    2、为对称轴的抛物线;(3) 集合的表示法: 列举法:用来表示有限集或具有显著规律的无限集,如N+=0,1,2,3,;描述法。2、两类关系:(1) 元素与集合的关系,用或表示; (2)集合与集合的关系,用,=表示,当AB时,称A是B的子集;当AB时,称A是B的真子集。3、集合运算 (1)交,并,补,定义:AB=x|xA且xB,AB=x|xA,或xB,CUA=x|xU,且xA,集合U表示全集;(2) 运算律,如A(BC)=(AB)(AC),CU(AB)=(CUA)(CUB),CU(AB)=(CUA)(CUB)等。 4、命题:(1) 命题分类:真命题与假命题,简单命题与复合命题;(2) 复合命题的形式

    3、:p且q,p或q,非p; (3)复合命题的真假:对p且q而言,当q、p为真时,其为真;当p、q中有一个为假时,其为假。对p或q而言,当p、q均为假时,其为假;当p、q中有一个为真时,其为真;当p为真时,非p为假;当p为假时,非p为真。 (3)四种命题:记“若q则p”为原命题,则否命题为“若非p则非q”,逆命题为“若q则p“,逆否命题为”若非q则非p“。其中互为逆否的两个命题同真假,即等价。因此,四种命题为真的个数只能是偶数个。5、 充分条件与必要条件 (1)定义:对命题“若p则q”而言,当它是真命题时,p是q的充分条件,q是p的必要条件,当它的逆命题为真时,q是p的充分条件,p是q的必要条件,

    4、两种命题均为真时,称p是q的充要条件; (2)在判断充分条件及必要条件时,首先要分清哪个命题是条件,哪个命题是结论,其次,结论要分四种情况说明:充分不必要条件,必要不充分条件,充分且必要条件,既不充分又不必要条件。从集合角度看,若记满足条件p的所有对象组成集合A,满足条件q的所有对象组成集合q,则当AB时,p是q的充分条件。BA时,p是q的充分条件。A=B时,p是q的充要条件;(3) 当p和q互为充要时,体现了命题等价转换的思想。6、 反证法是中学数学的重要方法。会用反证法证明一些代数命题。 7、集合概念及其基本理论是近代数学最基本的内容之一。学会用集合的思想处理数学问题。三、典型例题 例1、

    5、已知集合M=y|y=x2+1,xR,N=y|y=x+1,xR,求MN。解题思路分析:在集合运算之前,首先要识别集合,即认清集合中元素的特征。M、N均为数集,不能误认为是点集,从而解方程组。其次要化简集合,或者说使集合的特征明朗化。M=y|y=x2+1,xR=y|y1,N=y|y=x+1,xR=y|yR MN=M=y|y1说明:实际上,从函数角度看,本题中的M,N分别是二次函数和一次函数的值域。一般地,集合y|y=f(x),xA应看成是函数y=f(x)的值域,通过求函数值域化简集合。此集合与集合(x,y)|y=x2+1,xR是有本质差异的,后者是点集,表示抛物线y=x2+1上的所有点,属于图形范

    6、畴。集合中元素特征与代表元素的字母无关,例y|y1=x|x1。例2、已知集合A=x|x2-3x+2=0,B+x|x2-mx+2=0,且AB=B,求实数m范围。解题思路分析:化简条件得A=1,2,AB=BBA根据集合中元素个数集合B分类讨论,B=,B=1或2,B=1,2当B=时,=m2-80 当B=1或2时,m无解当B=1,2时, m=3综上所述,m=3或说明:分类讨论是中学数学的重要思想,全面地挖掘题中隐藏条件是解题素质的一个重要方面,如本题当B=1或2时,不能遗漏=0。例3、用反证法证明:已知x、yR,x+y2,求 证x、y中至少有一个大于1。解题思路分析:假设x1且y1,由不等式同向相加的

    7、性质x+y2与已知x+y2矛盾 假设不成立 x、y中至少有一个大于1说明;反证法的理论依据是:欲证“若p则q”为真,先证“若p则非q”为假,因在条件p下,q与非q是对立事件(不能同时成立,但必有一个成立),所以当“若p则非q”为假时,“若p则q”一定为真。例4、若A是B的必要而不充分条件,C是B的充要条件,D是C的充分而不必要条件,判断D是A的什么条件。解题思路分析:利用“”、“”符号分析各命题之间的关系 DCBA DA,D是A的充分不必要条件说明:符号“”、“”具有传递性,不过前者是单方向的,后者是双方向的。例5、求直线l:ax-y+b=0经过两直线l1:2x-2y-3=0和l2:3x-5y

    8、+1=0交点的充要条件。解题思路分析:从必要性着手,分充分性和必要性两方面证明。由 得l1,l2交点P() l过点P 17a+4b=11充分性:设a,b满足17a+4b=11 代入l方程:整理得:此方程表明,直线l恒过两直线的交点()而此点为l1与l2的交点 充分性得证 综上所述,命题为真说明:关于充要条件的证明,一般有两种方式,一种是利用“”,双向传输,同时证明充分性及必要性;另一种是分别证明必要性及充分性,从必要性着手,再检验充分性。四、同步练习(一) 选择题1、 设M=x|x2+x+2=0,a=lg(lg10),则a与M的关系是A、a=M B、Ma C、aM D、Ma2、 已知全集U=R

    9、,A=x|x-a|2,B=x|x-1|3,且AB=,则a的取值范围是A、 0,2 B、(-2,2) C、(0,2 D、(0,2)3、 已知集合M=x|x=a2-3a+2,aR,N、x|x=b2-b,bR,则M,N的关系是A、 MN B、MN C、M=N D、不确定 4、设集合A=x|xZ且-10x-1,B=x|xZ,且|x|5,则AB中的元素个数是A、11 B、10 C、16 D、155、集合M=1,2,3,4,5的子集是A、15 B、16 C、31 D、326、对于命题“正方形的四个内角相等”,下面判断正确的是 A、所给命题为假 B、它的逆否命题为真C、它的逆命题为真 D、它的否命题为真7、

    10、“”是coscos”的A、充分不必要条件 B、必要不充分条件C、充要条件 D、既不充分也不必要条件 8、集合A=x|x=3k-2,kZ,B=y|y=3l+1,lZ,S=y|y=6m+1,mZ之间的关系是A、SBA B、S=BA C、SB=A D、SB=A9、方程mx2+2x+1=0至少有一个负根的充要条件是A、0m1或m0 B、0m1C、m1 D、m110、已知p:方程x2+ax+b=0有且仅有整数解,q:a,b是整数,则p是q的A、充分不必要条件 B、必要不充分条件充要条件 D、既不充分又不必要条件(二) 填空题11、 已知M=,N=x|,则MN=_。 12、在100个学生中,有乒乓球爱好者

    11、60人,排球爱好者65人,则两者都爱好的人数最少是_人。13、 关于x的方程|x|-|x-1|=a有解的充要条件是_。14、 命题“若ab=0,则a、b中至少有一个为零”的逆否命题为_。15、 非空集合p满足下列两个条件:(1)p1,2,3,4,5,(2)若元素ap,则6-ap,则集合p个数是_。(三) 解答题16、 设集合A=(x,y)|y=ax+1,B=(x,y)|y=|x|,若AB是单元素集合,求a取值范围。17、 已知抛物线C:y=-x2+mx-1,点M(0,3),N(3,0),求抛物线C与线段MN有两个不同交点的充要条件。18、 设A=x|x2+px+q=0,M=1,3,5,7,9,

    12、N=1,4,7,10,若AM=,AN=A,求p、q的值。19、 已知,b=2-x,c=x2-x+1,用反证法证明:a、b、c中至少有一个不小于1。函 数一、复习要求7、 函数的定义及通性;2、函数性质的运用。二、学习指导 1、函数的概念: (1)映射:设非空数集A,B,若对集合A中任一元素a,在集合B中有唯一元素b与之对应,则称从A到B的对应为映射,记为f:AB,f表示对应法则,b=f(a)。若A中不同元素的象也不同,则称映射为单射,若B中每一个元素都有原象与之对应,则称映射为满射。既是单射又是满射的映射称为一一映射。 (2)函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域

    13、,象集C=f(x)|xA为值域。定义域,对应法则,值域构成了函数的三要素,从逻辑上讲,定义域,对应法则决定了值域,是两个最基本的因素。逆过来,值域也会限制定义域。求函数定义域,通过解关于自变量的不等式(组)来实现的。要熟记基本初等函数的定义域,通过四则运算构成的初等函数,其定义域是每个初等函数定义域的交集。复合函数定义域,不仅要考虑内函数的定义域,还要考虑到外函数对应法则的要求。理解函数定义域,应紧密联系对应法则。函数定义域是研究函数性质的基础和前提。函数对应法则通常表现为表格,解析式和图象。其中解析式是最常见的表现形式。求已知类型函数解析式的方法是待定系数法,抽象函数的解析式常用换元法及凑合

    14、法。求函数值域是函数中常见问题,在初等数学范围内,直接法的途径有单调性,基本不等式及几何意义,间接法的途径为函数与方程的思想,表现为法,反函数法等,在高等数学范围内,用导数法求某些函数最值(极值)更加方便。在中学数学的各个部分都存在着求取值范围这一典型问题,它的一种典型处理方法就是建立函数解析式,借助于求函数值域的方法。2、函数的通性 (1)奇偶性:函数定义域关于原点对称是判断函数奇偶性的必要条件,在利用定义判断时,应在化简解析式后进行,同时灵活运用定义域的变形,如,(f(x)0)。奇偶性的几何意义是两种特殊的图象对称。函数的奇偶性是定义域上的普遍性质,定义式是定义域上的恒等式。利用奇偶性的运

    15、算性质可以简化判断奇偶性的步骤。 (2)单调性:研究函数的单调性应结合函数单调区间,单调区间应是定义域的子集。判断函数单调性的方法:定义法,即比差法;图象法;单调性的运算性质(实质上是不等式性质);复合函数单调性判断法则。函数单调性是单调区间上普遍成立的性质,是单调区间上恒成立的不等式。函数单调性是函数性质中最活跃的性质,它的运用主要体现在不等式方面,如比较大小,解抽象函数不等式等。 (3)周期性:周期性主要运用在三角函数及抽象函数中,是化归思想的重要手段。求周期的重要方法:定义法;公式法;图象法;利用重要结论:若函数f(x)满足f(a-x)=f(a+x),f(b-x)=f(b+x),ab,则

    16、T=2|a-b|。 (4)反函数:函数是否是有反函数是函数概念的重要运用之一,在求反函数之前首先要判断函数是否具备反函数,函数f(x)的反函数f-1(x)的性质与f(x)性质紧密相连,如定义域、值域互换,具有相同的单调性等,把反函数f-1(x)的问题化归为函数f(x)的问题是处理反函数问题的重要思想。设函数f(x)定义域为A,值域为C,则 f-1f(x)=x,xA ff-1(x)=x,xC8、 函数的图象函数的图象既是函数性质的一个重要方面,又能直观地反映函数的性质,在解题过程中,充分发挥图象的工具作用。图象作法:描点法;图象变换。应掌握常见的图象变换。4、本单常见的初等函数;一次函数,二次函

    17、数,反比例函数,指数函数,对数函数。在具体的对应法则下理解函数的通性,掌握这些具体对应法则的性质。分段函数是重要的函数模型。对于抽象函数,通常是抓住函数特性是定义域上恒等式,利用赋值法(变量代换法)解题。联系到具体的函数模型可以简便地找到解题思路,及解题突破口。应用题是函数性质运用的重要题型。审清题意,找准数量关系,把握好模型是解应用题的关键。5、主要思想方法:数形结合,分类讨论,函数方程,化归等。三、典型例题 例1、已知,函数y=g(x)图象与y=f-1(x+1)的图象关于直线y=x对称,求g(11)的值。分析:利用数形对应的关系,可知y=g(x)是y=f-1(x+1)的反函数,从而化g(x

    18、)问题为已知f(x)。 y=f-1(x+1) x+1=f(y) x=f(y)-1 y=f-1(x+1)的反函数为y=f(x)-1即 g(x)=f(x)-1 g(11)=f(11)-1=评注:函数与反函数的关系是互为逆运算的关系,当f(x)存在反函数时,若b=f(a),则a=f-1(b)。例2、设f(x)是定义在(-,+)上的函数,对一切xR均有f(x)+f(x+2)=0,当-1x1时,f(x)=2x-1,求当1x3时,函数f(x)的解析式。解题思路分析:利用化归思想解题 f(x)+f(x+2)=0 f(x)=-f(x+2) 该式对一切xR成立 以x-2代x得:f(x-2)=-f(x-2)+2=

    19、-f(x)当1x3时,-1x-21 f(x-2)=2(x-2)-1=2x-5 f(x)=-f(x-2)=-2x+5 f(x)=-2x+5(1x3)评注:在化归过程中,一方面要转化自变量到已知解析式的定义域,另一方面要保持对应的函数值有一定关系。在化归过程中还体现了整体思想。例3、已知g(x)=-x2-3,f(x)是二次函数,当x-1,2时,f(x) 的最小值,且f(x)+g(x)为奇函数,求f(x)解析式。分析:用待定系数法求f(x)解析式设f(x)=ax2+bx+c(a0)则f(x)+g(x)=(a-1)x2+bx+c-3由已知f(x)+g(x)为奇函数 f(x)=x2+bx+3下面通过确定

    20、f(x)在-1,2上何时取最小值来确定b,分类讨论。 ,对称轴(1) 当2,b-4时,f(x)在-1,2上为减函数 2b+7=1 b=3(舍)(2) 当(-1,2),-4b0时,f(x)1,且对任意的a、bR,有f(a+b)=f(a)f(b),(1) 求证:f(0)=1;(2) 求证:对任意的xR,恒有f(x)0;(3) 证明:f(x)是R上的增函数;(4) 若f(x)f(2x-x2)1,求x的取值范围。分析:(1) 令a=b=0,则f(0)=f(0)2 f(0)0 f(0)=1(2) 令a=x,b=-x 则 f(0)=f(x)f(-x) 由已知x0时,f(x)10 当x0,f(-x)0 又x

    21、=0时,f(0)=10 对任意xR,f(x)0(3) 任取x2x1,则f(x2)0,f(x1)0,x2-x10 f(x2)f(x1) f(x)在R上是增函数(4) f(x)f(2x-x2)=fx+(2x-x2)=f(-x2+3x) 又1=f(0),f(x)在R上递增 由f(3x-x2)f(0)得:3x-x20 0x3评注:根据f(a+b)=f(a)f(b)是恒等式的特点,对a、b适当赋值。利用单调性的性质去掉符号“f”得到关于x的代数不等式,是处理抽象函数不等式的典型方法。例5、已知lgx+lgy=2lg(x-2y),求的值。分析:在化对数式为代数式过程中,全面挖掘x、y满足的条件由已知得 x

    22、=4y, 例6、某工厂今年1月,2月,3月生产某产品分别为1万件,1.2万件,1.3万件,为了估测以后每个月的产量,以这三个月的产品数量为依据,用一个函数模拟该产品的月产量y与月份数x的关系,模拟函数可选用y=abx+c(其中a,b,c为常数)或二次函数,已知4月份该产品的产量为1.37万件,请问用哪个函数作为模拟函数较好?并说明理由。分析:设f(x)=px2+qx+r(p0)则 f(4)=-0.0542+0.354+0.7=1.3设g(x)=abx+c则 g(4)=-0.80.54+1.4=1.35 |1.35-1.37|bc B、acb C、bca D、cba2、方程(a0且a1)的实数解

    23、的个数是A、0 B、1 C、2 D、33、的单调减区间是A、(-,1) B、(1,+) C、(-,-1)(1,+) D、(-,+)9、 函数的值域为A、 (-,3 B、(-,-3 C、(-3,+) D、(3,+)10、 函数y=log2|ax-1|(ab)的图象的对称轴是直线x=2,则a等于A、 B、 C、2 D、-2 6、有长度为24的材料用一矩形场地,中间加两隔墙,要使矩形的面积最大,则隔壁的长度为A、 3 B、4 C、6 D、12(二) 填空题 7、已知定义在R的奇函数f(x)满足f(x+2)=-f(x),且当0x1时,f(x)=x,则=_。8、 已知y=loga(2-x)是x的增函数,

    24、则a的取值范围是_。9、 函数f(x)定义域为1,3,则f(x2+1)的定义域是_。 10、函数f(x)=x2-bx+c满足f(1+x)=f(1-x),且f(0)=3,则f(bx)与f(cx)的大小关系是_。 11、已知f(x)=log3x+3,x1,9,则y=f(x)2+f(x2)的最大值是_。12、已知A=y|y=x2-4x+6,yN,B=y|y=-x2-2x+18,yN,则AB中所有元素的和是_。13、若(x),g(x)都是奇函数,f(x)=m(x)+ng(x)+2在(0,+)上有最大值,则f(x)在(-,0)上最小值为_。14、函数y=log2(x2+1)(x0)的反函数是_。15、求

    25、值:=_。(三) 解答题16、若函数 的值域为-1,5,求a,c。17、设定义在-2,2上的偶函数f(x)在区间0,2上单调递减,若f(1-m)f(m),求实数m的取值范围。18、已知0a1,在函数y=logax(x1)的图象上有A,B,C三点,它们的横坐标分别是t,t+2,t+4(1) 若ABC面积为S,求S=f(t);(2) 判断S=f(t)的单调性;(3) 求S=f(t)最大值。19、 设f(x)=,xR(1) 证明:对任意实数a,f(x)在(-,+)上是增函数;(2) 当f(x)为奇函数时,求a;(3) 当f(x)为奇函数时,对于给定的正实数k,解不等式。20、 设0a3;(2) 求a

    26、的取值范围。数 列一、复习要求11、 等差数列及等比数列的定义,通项公式,前n项和公式及性质;2、一般数列的通项及前n项和计算。二、学习指导 1、数列,是按照一定顺序排列而成的一列数,从函数角度看,这种顺序法则就是函数的对应法则,因此数列可以看作是一个特殊的函数,其特殊性在于:第一,定义域是正整数集或其子集;第二,值域是有顺序的,不能用集合符号表示。研究数列,首先研究对应法则通项公式:an=f(n),nN+,要能合理地由数列前n项写出通项公式,其次研究前n项和公式Sn:Sn=a1+a2+an,由Sn定义,得到数列中的重要公式:。一般数列的an及Sn,,除化归为等差数列及等比数列外,求Sn还有下

    27、列基本题型:列项相消法,错位相消法。2、等差数列 (1)定义,an为等差数列an+1-an=d(常数),nN+2an=an-1+an+1(n2,nN+); (2)通项公式:an=an+(n-1)d,an=am+(n-m)d; 前n项和公式:; (3)性质:an=an+b,即an是n的一次型函数,系数a为等差数列的公差; Sn=an2+bn,即Sn是n的不含常数项的二次函数;若an,bn均为等差数列,则annn,kan+c(k,c为常数)均为等差数列;当m+n=p+q时,am+an=ap+aq,特例:a1+an=a2+an-1=a3+an-2=;当2n=p+q时,2an=ap+aq;当n为奇数时

    28、,S2n-1=(2n-1)an;S奇=a中,S偶=a中。 3、等比数列(1) 定义:=q(q为常数,an0);an2=an-1an+1(n2,nN+);(2) 通项公式:an=a1qn-1,an=amqn-m; 前n项和公式:;(3) 性质当m+n=p+q时,aman=apaq,特例:a1an=a2an-1=a3an-2=,当2n=p+q时,an2=apaq,数列kan,成等比数列。4、等差、等比数列的应用 (1)基本量的思想:常设首项、公差及首项、公比为基本量,借助于消元思想及解方程组思想等; (2)灵活运用等差数列、等比数列的定义及性质,简化计算; (3)若an为等差数列,则为等比数列(a

    29、0且a1);若an为正数等比数列,则logaan为等差数列(a0且a1)。三、典型例题 例1、已知数列an为等差数列,公差d0,其中, 恰为等比数列,若k1=1,k2=5,k3=17,求k1+k2+kn。解题思路分析:从寻找新、旧数列的关系着手设an首项为a1,公差为d a1,a5,a17成等比数列 a52=a1a17(a1+4d)2=a1(a1+16d) a1=2d设等比数列公比为q,则对项来说,在等差数列中:在等比数列中: 注:本题把k1+k2+kn看成是数列kn的求和问题,着重分析kn的通项公式。这是解决数列问题的一般方法,称为“通项分析法”。例2、设数列an为等差数列,Sn为数列an的

    30、前n项和,已知S7=7,S15=75,Tn为数列的前n项和,求Tn。解题思路分析:法一:利用基本元素分析法设an首项为a1,公差为d,则 此式为n的一次函数 为等差数列 法二:an为等差数列,设Sn=An2+Bn 解之得: ,下略注:法二利用了等差数列前n项和的性质例3、正数数列an的前n项和为Sn,且,求:(1) 数列an的通项公式;(2) 设,数列bn的前n项的和为Bn,求证:Bn.解题思路分析:(I) 涉及到an及Sn的递推关系,一般都用an=Sn-Sn-1(n2)消元化归。 4Sn=(an+1)2 4Sn-1=(an-1+1)2(n2) 4(Sn-Sn-1)=(an+1)2-(an-1

    31、+1)2 4an=an2-an-12+2an-2an-1整理得:(an-1+an)(an-an-1-2)=0 an0 an-an-1=2 an为公差为2的等差数列在中,令n=1,a1=1 an=2n-1 (II) 注:递推是学好数列的重要思想,例本题由4Sn=(an+1)2推出4Sn-1=(an-1+1)2,它其实就是函数中的变量代换法。在数列中一般用n-1,n+1等去代替n,实际上也就是说已知条件中的递推关系是关于n的恒等式,代换就是对n赋值。例4、等差数列an中,前m项的和为77(m为奇数),其中偶数项的和为33,且a1-am=18,求这个数列的通项公式。分析:利用前奇数项和和与中项的关系

    32、令m=2n-1,nN+则 n=4 m=7 an=11 a1+am=2an=22又a1-am=18 a1=20,am=2 d=-3 an=-3n+23例5、设an是等差数列,已知b1+b2+b3=,b1b2b3=,求等差数列的通项an。解题思路分析: an为等差数列 bn为等比数列从求解bn着手 b1b3=b22 b23= b2= 或 或 an=2n-3 或 an=-2n+5注:本题化归为bn求解,比较简单。若用an求解,则运算量较大。例6、已知an是首项为2,公比为的等比数列,Sn为它的前n项和,(1) 用Sn表示Sn+1;(2) 是否存在自然数c和k,使得成立。 解题思路分析: (1) (2

    33、)(*) 式(*) Sk+1Sk 又Sk4 由得:c=2或c=3当c=2时 S1=2 k=1时,cSk不成立,从而式不成立 由SkSk+1得: 当k2时,从而式不成立 当c=3时,S12,S2=3 当k=1,2时,CSk不成立 式不成立 当k3时,从而式不成立综上所述,不存在自然数c,k,使成立例7、某公司全年的利润为b元,其中一部分作为资金发给n位职工,资金分配方案如下:首先将职工按工作业绩(工作业绩均不相等)从大到小,由1到n排序,第1位职工得资金元,然后再将余额除以n发给第2位职工,按此方法将资金逐一发给每位职工,并将最后剩余部分作为公司发展基金。 (1)设ak(1kn)为第k位职工所得

    34、资金额,试求a2,a3,并用k,n和b表示ak(不必证明); (2)证明:ak0,d= an是递减数列,且Sn必为最大值设 k=14 (Sn)max=S14=14.35四、同步练习(一) 选择题 1、已知a,b,a+b成等差数列,a,b,ab成等比数列,且0logmab1 B、1m8 D、0m82、设a0,b0,a,x1,x2,b成等差数列,a,y1,y2,b成等比数列,则x1+x2与y1+y2的大小关系是A、x1+x2y1+y2 B、x1+x2y1+y2C、x1+x2y1+y212、 已知Sn是an的前n项和,Sn=Pn(PR,nN+),那么数列anA、 是等比数列 B、当P0时是等比数列C

    35、、 当P0,P1时是等比数列 D、不是等比数列13、 an是等比数列,且an0,a2a4+2a3a5+a4a6=25,则a3+a5等于A、5 B、10 C、15 D、2014、 已知a,b,c成等差数列,则二次函数y=ax2+2bx+c的图象与x轴交点个数是A、 0 B、1 C、2 D、1或215、 设mN+,log2m的整数部分用F(m)表示,则F(1)+F(2)+F(1024)的值是A、 8204 B、8192 C、9218 D、8021 7、若x的方程x2-x+a=0和x2-x+b=0(ab)的四个根可组成首项为的等差数列,则a+b的值为A、 B、 C、 D、8、 在100以内所有能被3

    36、整除但不能被7整除的正整数和是A、1557 B、1473 C、1470 D、1368 9、从材料工地运送电线杆到500m以外的公路,沿公路一侧每隔50m埋栽一根电线杆,已知每次最多只能运3根,要完成运载20根电线杆的任务,最佳方案是使运输车运行A、 11700m B、14700m C、14500m D、14000m 10、已知等差数列an中,|a3|=|a9|,公差d0),nN+满足(nN+),则an为等差数列是bn为等比数列的_条件。14、长方体的三条棱成等比数列,若体积为216cm3,则全面积的最小值是_cm2。15、若不等于1的三个正数a,b,c成等比数列,则(2-logba)(1+lo

    37、gca)=_。(三) 解答题16、已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,求这个数列的公比和项数。17、已知等比数列an的首项为a10,公比q-1(q1),设数列bn的通项bn=an+1+an+2(nN+),数列an,bn的前n项和分别记为An,Bn,试比较An与Bn大小。18、数列an中,a1=8,a4=2且满足an+2=2an+1-an(nN+)(1) 求数列an通项公式;(2) 设Sn=|a1|+|a2|+|an|,求Sn;(3) 设(nN+)Tn=b1+b2+bn,是否存在最大的整数m,使得对于任意的nN+,均有成立?若存在,求出m的值;若不存在,说明理由。 三角函数一、复习要求16、 三角函数的概念及象限角、弧度制等概念; 2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。二、学习指导 1、角的概念的推广。从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边相同的角,都可以表示成k3600+的形式,特例,终边在x轴上的角集合|=k1800,k

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:特岗数学专业知识总复习(DOC 72页).doc
    链接地址:https://www.163wenku.com/p-5643501.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库