整式的乘除知识点及题型复习汇编(DOC 9页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《整式的乘除知识点及题型复习汇编(DOC 9页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 整式的乘除知识点及题型复习汇编DOC 9页 整式 乘除 知识点 题型 复习 汇编 DOC
- 资源描述:
-
1、学习-好资料 VIP个性化辅导教案教学内容 整式运算考点1、幂的有关运算 (m、n都是正整数) (m、n都是正整数) (n是正整数) (a0,m、n都是正整数,且mn) (a0) (a0,p是正整数)幂的乘方法则:幂的乘方,底数不变,指数相乘。 积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。同底数幂相除,底数不变,指数相减。例:在下列运算中,计算正确的是()(A) (B) (C)(D) 练习:1、_. 2、 = 。 3、 = 。 4、 = 。 5、下列运算中正确的是( )A;B;C; D6、计算的结果是( )A、 B、 C、 D、7、下列计算中,正确的有( ) 。A、
2、B、 C、 D、8、在 中结果为的有( )A、 B、 C、 D、提高点1:巧妙变化幂的底数、指数例:已知:,求的值;点评: 、中的分别看作一个整体,通过整体变换进行求值,则有:;1、 已知,求的值。2、 已知,求的值。3、 若,则_。4、 若,则=_。5、 若,则_。6、 已知,求的值。7、 已知,则_提高点2:同类项的概念例: 若单项式2am+2nbn-2m+2与a5b7是同类项,求nm的值 【点评】考查同类项的概念,由同类项定义可得 解出即可;求出:所以:练习:1、已知与的和是单项式,则的值是_.经典题目:1、已知整式,求的值。考点2、整式的乘法运算例:计算: = 解:.练习:8、 若,求
3、、的值。9、 已知,则的值为( ).A B C D10、 代数式的值( ).A只与有关 B只与有关 C与都无关 D与都有关11、 计算:的结果是( ).考点3、乘法公式平方差公式: 完全平方公式: , 例:计算:分析:运用多项式的乘法法则以及乘法公式进行运算,然后合并同类项.解: =.例:已知:,化简的结果是分析:本题主要考查多项式与多项式的乘法运算.首先按照法则进行计算,然后灵活变形,使其出现()与,以便求值.解:=.练习:1、(a+b1)(ab+1)= 。2下列多项式的乘法中,可以用平方差公式计算的是( ) A(a+b)(b+a) B(a+b)(ab) C(a+b)(ba) D(a2b)(
4、b2+a)3下列计算中,错误的有( )(3a+4)(3a4)=9a24; (2a2b)(2a2+b)=4a2b2;(3x)(x+3)=x29; (x+y)(x+y)=(xy)(x+y)=x2y2 A1个 B2个 C3个 D4个4若x2y2=30,且xy=5,则x+y的值是( ) A5 B6 C6 D55、已知 求与的值.6、试说明不论x,y取何值,代数式的值总是正数。7、若 ,则括号内应填入的代数式为( ).A B C D8、(a2b+3c)2(a+2b3c)2= 。9、若的值使得成立,则的值为( )A5 B4 C3 D210、 已知,都是有理数,求的值。经典题目:11、 已知,求 m,n 的
展开阅读全文