抛物线-高考数学知识点总结-高考数学真题复习(DOC 21页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《抛物线-高考数学知识点总结-高考数学真题复习(DOC 21页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 抛物线-高考数学知识点总结-高考数学真题复习DOC 21页 抛物线 高考 数学 知识点 总结 复习 DOC 21 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、9.7抛物线2014高考会这样考1.考查抛物线的定义、标准方程;2.考查抛物线的几何性质、焦点弦问题;3.考查直线与抛物线的位置关系复习备考要这样做1.熟练掌握抛物线的定义和四种形式的标准方程;2.能根据抛物线的方程研究抛物线的几何性质;3.掌握直线与抛物线位置关系问题的一般解法1 抛物线的概念平面内与一个定点F和一条定直线l(Fl)的距离相等的点的轨迹叫做抛物线点F叫做抛物线的焦点,直线l叫做抛物线的准线2 抛物线的标准方程与几何性质标准方程y22px(p0)y22px(p0)x22py(p0)x22py(p0)p的几何意义:焦点F到准线l的距离图形顶点O(0,0)对称轴y0x0焦点FFFF
2、离心率e1准线方程xxyy范围x0,yRx0,yRy0,xRy0,xR开口方向向右向左向上向下难点正本疑点清源1 抛物线的定义抛物线的定义实质上给出了一个重要的内容:可将抛物线上的点到焦点的距离转化为到准线的距离,可以使运算化繁为简2 抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离牢记它对解题非常有益3 求抛物线方程时,要依据题设条件,弄清抛物线的对称轴和开口方向,正确地选择抛物线的标准方程1 动圆过点(1,0),且与直线x1相切,则动圆的圆心的轨迹方程为_答案y24x解析设动圆的圆心坐标为(x,y),则圆心到点(1,0)的距离与到直线x1的距离相等,根
3、据抛物线的定义易知动圆的圆心的轨迹方程为y24x.2 若抛物线y22px的焦点与椭圆1的右焦点重合,则p的值为_答案4解析因为椭圆1的右焦点为(2,0),所以抛物线y22px的焦点为(2,0),则p4.3 (2012重庆)过抛物线y22x的焦点F作直线交抛物线于A,B两点,若|AB|,|AF|BF|,则|AF|_.答案解析由于y22x的焦点坐标为,设AB所在直线的方程为yk,A(x1,y1),B(x2,y2),x10),则M到焦点的距离为xM23,p2,y24x.y428,|OM|2.5 设抛物线y28x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是 ()A
4、. B2,2C1,1 D4,4答案C解析Q(2,0),设直线l的方程为yk(x2),代入抛物线方程,消去y整理得k2x2(4k28)x4k20,由(4k28)24k24k264(1k2)0,解得1k1.题型一抛物线的定义及应用例1已知抛物线y22x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|PA|PF|的最小值,并求出取最小值时点P的坐标思维启迪:由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,求|PA|PF|的问题可转化为求|PA|d的问题解将x3代入抛物线方程y22x,得y.2,A在抛物线内部,如图设抛物线上点P到准线l:x的距离为d,由定义知|PA|PF|PA
5、|d,当PAl时,|PA|d最小,最小值为,即|PA|PF|的最小值为,此时P点纵坐标为2,代入y22x,得x2,点P的坐标为(2,2)探究提高与抛物线有关的最值问题,一般情况下都与抛物线的定义有关由于抛物线的定义在运用上有较大的灵活性,因此此类问题也有一定的难度“看到准线想焦点,看到焦点想准线”,这是解决抛物线焦点弦有关问题的重要途径 (2011辽宁)已知F是抛物线y2x的焦点,A、B是该抛物线上的两点,|AF|BF|3,则线段AB的中点到y轴的距离为()A. B1 C. D.答案C解析|AF|BF|xAxB3,xAxB.线段AB的中点到y轴的距离为.题型二抛物线的标准方程和几何性质例2抛物
6、线的顶点在原点,对称轴为y轴,它与圆x2y29相交,公共弦MN的长为2,求该抛物线的方程,并写出它的焦点坐标与准线方程思维启迪:首先确定方程的形式,根据条件列方程确定方程中的系数解由题意,抛物线方程为x22ay (a0)设公共弦MN交y轴于A,N在y轴右侧,则|MA|AN|,而|AN|.|ON|3,|OA|2,N(,2)N点在抛物线上,52a(2),即2a,故抛物线的方程为x2y或x2y.抛物线x2y的焦点坐标为,准线方程为y.抛物线x2y的焦点坐标为,准线方程为y.探究提高(1)由抛物线的标准方程,可以首先确定抛物线的开口方向、焦点的位置及p的值,再进一步确定抛物线的焦点坐标和准线方程(2)
7、求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p,只需一个条件就可以确定抛物线的标准方程 如图,已知抛物线y22px (p0)有一个内接直角三角形,直角顶点在原点,两直角边OA与OB的长分别为1和8,求抛物线的方程解设直线OA的方程为ykx,k0,则直线OB的方程为yx,由得x0或x.A点坐标为,B点坐标为(2pk2,2pk),由|OA|1,|OB|8,可得解方程组得k664,即k24.则p2.又p0,则p,故所求抛物线方程为y2x.题型三直线与抛物线的位置关系例3(2011江西)已知过抛物线y22px(p0)的焦
8、点,斜率为2的直线交抛物线于A(x1,y1),B(x2,y2)(x1x2)两点,且|AB|9.(1)求该抛物线的方程(2)O为坐标原点,C为抛物线上一点,若,求的值思维启迪:(1)联立方程,利用焦点弦公式求解;(2)先求出A、B坐标,利用关系式表示出点C坐标,再利用点C在抛物线上求解解(1)直线AB的方程是y2(x),与y22px联立,从而有4x25pxp20,所以x1x2.由抛物线定义得|AB|x1x2p9,所以p4,从而抛物线方程是y28x.(2)由p4知4x25pxp20可化为x25x40,从而x11,x24,y12,y24,从而A(1,2),B(4,4)设(x3,y3)(1,2)(4,
9、4)(41,42),又y8x3,所以2(21)28(41),即(21)241,解得0或2.探究提高(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB|x1x2p,若不过焦点,则必须用一般弦长公式 设抛物线C:y24x,F为C的焦点,过F的直线l与C相交于A、B两点(1)设l的斜率为1,求|AB|的大小;(2)求证:是一个定值(1)解F(1,0),直线l的方程为yx1,设A(x1,y1),B(x2,y2),由得x26x10,x1x26,x1x21.|AB|
10、8.(2)证明设直线l的方程为xky1,由得y24ky40.y1y24k,y1y24,(x1,y1),(x2,y2)x1x2y1y2(ky11)(ky21)y1y2k2y1y2k(y1y2)1y1y24k24k2143.是一个定值直线与抛物线的位置关系问题典例:(14分)(2011湖南)已知平面内一动点P到点F(1,0)的距离与点P到y轴的距离的差等于1.(1)求动点P的轨迹C的方程;(2)过点F作两条斜率存在且互相垂直的直线l1,l2,设l1与轨迹C相交于点A,B,l2与轨迹C相交于点D,E,求的最小值审题视角(1)依题设可知,利用直接法求轨迹方程;(2)先设直线l1的斜率为k,依题设条件可
展开阅读全文