平面向量的概念及线性运算-高考数学知识点总结-高考数学真题复习(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《平面向量的概念及线性运算-高考数学知识点总结-高考数学真题复习(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面向量的概念及线性运算-高考数学知识点总结-高考数学真题复习DOC 19页 平面 向量 概念 线性 运算 高考 数学 知识点 总结 复习 DOC 19 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、5.1平面向量的概念及线性运算2014高考会这样考1.考查平面向量的概念、线性运算;2.考查向量运算的几何意义,向量共线的应用复习备考要这样做1.重视向量的概念,熟练掌握向量加减法及几何意义;2.理解应用向量共线和点共线、直线平行的关系1 向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为零的向量;其方向是任意的记作0单位向量长度等于1个单位的向量非零向量a的单位向量为平行向量方向相同或相反的非零向量0与任一向量平行或共线共线向量方向相同或相反的非零向量又叫做共线向量相等向量长度相等且方向相同的向量两向量只有相等或不等,不能比较
2、大小相反向量长度相等且方向相反的向量0的相反向量为02. 向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算(1)交换律:abba.(2)结合律:(ab)ca(bc).减法求a与b的相反向量b的和的运算叫做a与b的差三角形法则aba(b)数乘求实数与向量a的积的运算(1)|a|a|;(2)当0时,a的方向与a的方向相同;当0时,a的方向与a的方向相反;当0时,a0(a)a;()aaa;(ab)ab3. 共线向量定理向量a(a0)与b共线的充要条件是存在唯一一个实数,使得ba.难点正本疑点清源1 向量的两要素向量具有大小和方向两个要素用有向线段表示向量时,与有向线段起点的位
3、置没有关系同向且等长的有向线段都表示同一向量2 一般地,首尾顺次相接的多个向量的和等于从第一个向量起点指向最后一个向量终点的向量3 证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所在直线平行,必须说明这两条直线不重合1 若a“向东走8 km”,b“向北走8 km”,则|ab|_;ab的方向是_答案8东北方向解析根据向量加法的几何意义,|ab|表示以8 km为边长的正方形的对角线长,|ab|8,ab的方向是东北方向2. 如图,在平行四边形ABCD中,E为DC边的中点,且a,b,则_.答案ba解析
4、ababa.3 已知D为三角形ABC边BC的中点,点P满足0,则实数的值为_答案2解析如图所示,由,且0,则P是以AB、AC为邻边的平行四边形的第四个顶点,因此2,则2.4 已知O是ABC所在平面内一点,D为BC边的中点,且20,那么()A. B.2C.3 D2答案A解析由20可知,O是底边BC上的中线AD的中点,故.5 (2012四川)设a、b都是非零向量,下列四个条件中,使成立的充分条件是()Aab BabCa2b Dab且|a|b|答案C解析表示与a同向的单位向量,表示与b同向的单位向量,只要a与b同向,就有,观察选项易知C满足题意题型一平面向量的概念辨析例1给出下列命题:若|a|b|,
5、则ab;若A,B,C,D是不共线的四点,则是四边形ABCD为平行四边形的充要条件;若ab,bc,则ac;ab的充要条件是|a|b|且ab.其中正确命题的序号是_答案解析不正确两个向量的长度相等,但它们的方向不一定相同正确,|且,又A,B,C,D是不共线的四点,四边形ABCD为平行四边形;反之,若四边形ABCD为平行四边形,则且|,因此,.正确ab,a,b的长度相等且方向相同;又bc,b,c的长度相等且方向相同,a,c的长度相等且方向相同,故ac.不正确当ab且方向相反时,即使|a|b|,也不能得到ab,故“|a|b|且ab”不是“ab”的充要条件,而是必要不充分条件综上所述,正确命题的序号是.
6、探究提高(1)正确理解向量的相关概念及其含义是解题的关键(2)相等向量具有传递性,非零向量的平行也具有传递性(3)共线向量即为平行向量,它们均与起点无关(4)向量可以平移,平移后的向量与原向量是相等向量解题时,不要把它与函数图象移动混为一谈(5)非零向量a与的关系:是a方向上的单位向量 下列命题中正确的是()Aa与b共线,b与c共线,则a与c也共线B任意两个相等的非零向量的始点与终点是一个平行四边形的四个顶点C向量a与b不共线,则a与b都是非零向量D有相同起点的两个非零向量不平行答案C解析由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一
7、直线上,而此时就构不成四边形,所以B不正确;向量的平行只要求方向相同或相反,与起点是否相同无关,所以D不正确;对于C,其条件以否定形式给出,所以可从其逆否命题入手来考虑,假设a与b不都是非零向量,即a与b中至少有一个是零向量,而由零向量与任一向量都共线,可知a与b共线,符合已知条件,所以有向量a与b不共线,则a与b都是非零向量,故选C.题型二向量的线性运算例2如图,以向量a,b为邻边作OADB,用a,b表示,.思维启迪:结合图形性质,准确灵活运用三角形法则和平行四边形法则是向量加减运算的关键解ab,ab,ab.又ab,ab,ababab.综上,ab,ab,ab.探究提高(1)解题的关键在于搞清
8、构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化(2)用几个基本向量表示某个向量问题的基本技巧:观察各向量的位置;寻找相应的三角形或多边形;运用法则找关系;化简结果在ABC中,c,b,若点D满足2,则等于()A.bc B.cbC.bc D.bc答案A解析2,2(),32,bc.题型三共线向量定理及应用例3设两个非零向量a与b不共线,(1)若ab,2a8b,3(ab),求证:A、B、D三点共线;(2)试确定实数k,使kab和akb共线思维启迪:解决点共线或向量共线的问题,要结合向量共线定理进行(1)证明ab,2a8b,3(ab),2a8b3(a
9、b)2a8b3a3b5(ab)5.、共线,又它们有公共点B,A、B、D三点共线(2)解kab与akb共线,存在实数,使kab(akb),即kabakb.(k)a(k1)b.a、b是不共线的两个非零向量,kk10,k210.k1.探究提高(1)证明三点共线问题,可用向量共线解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线(2)向量a、b共线是指存在不全为零的实数1,2,使1a2b0成立,若1a2b0,当且仅当120时成立,则向量a、b不共线 设D、E、F分别是ABC的三边BC、CA、AB上的点,且2,2,2,则与()A反向平行 B同向平行C互相垂直 D既不
展开阅读全文