柯西不等式的应用(整理篇)复习进程(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《柯西不等式的应用(整理篇)复习进程(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 柯西不等式的应用整理篇复习进程DOC 19页 不等式 应用 整理 复习 进程 DOC 19
- 资源描述:
-
1、柯西不等式的证明及相关应用摘要:柯西不等式是高中数学新课程的一个新增内容,也是高中数学的一个重要知识点,它不仅历史悠久,形式优美,结构巧妙,也是证明命题、研究最值问题的一个强有力的工具。关键词:柯西不等式 柯西不等式变形式 最值 一、柯西(Cauchy)不等式: 等号当且仅当或时成立(k为常数,) 现将它的证明介绍如下:方法1 证明:构造二次函数 = 由构造知 恒成立 又 即 当且仅当 即时等号成立方法2 证明:数学归纳法(1) 当时 左式= 右式= 显然 左式=右式 当时 右式 左式 故时 不等式成立 (2)假设时,不等式成立 即 当 ,m为常数, 或时等号成立 设A= B= 则 当 ,m为
2、常数, 或时等号成立 即 时不等式成立综合(1)(2)可知不等式成立二、柯西不等式的简单应用柯西不等式是一个非常重要的不等式,学习柯西不等式可以提高学生的数学探究能力、创新能力等,能进一步开阔学生的数学视野,培养学生的创新能力,提高学生的数学素质。灵活巧妙的应用运用它,可以使一些较为困难的问题迎刃而解,这个不等式结构和谐,应用灵活广泛,常通过适当配凑,直接套用柯西不等式解题,常见的有两大类型: 1、证明相关数学命题 (1)证明不等式例1 已知正数满足 证明 证明:利用柯西不等式 又因为 在此不等式两边同乘以2,再加上得:故(2)三角形的相关问题例2 设是内的一点,是到三边的距离,是外接圆的半径
3、, 证明 证明:由柯西不等式得:记为的面积,则故不等式成立。 2、求解有关数学问题 常用于求最值 例3 已知实数满足, 试求 的最值 解:由柯西不等式得,有 即由条件可得, 解得,当且仅当 时等号成立, 代入时, 时 例4 空间中一向量与x轴,y轴,z轴正向之夹角依次为a,b,g(a,b,g 均非象限角), 求的最小值。 解 : 由柯西不等式得: sin2a+ sin2b + sin2g = 2 2 的最小值为18三、巧用柯西不等式的变形解题很多高考数学问题的解决,如果仅从基础知识、基本公式的正面人手,就很难取得知识性的突破,而如果对基础知识、基本公式稍作变形,就会大大降低问题的难度,达到化难
4、为易、化繁为简、化陌生为熟悉的目的而学习柯西不等式,仅了解柯西不等式的基本公式还是不够的,学生还必须掌握下面这个柯西不等式的变形公式,此公式也是权方和不等式的一种特殊情况,这样我们就可以在解题过程中更快更准地解决问题柯西不等式的变形公式: 约定 有 当且仅当等号成立分析:由柯西不等式可得 例1 设, 证明 证明:由变形公式得: 例2 (2007年广州市一模理科) 已知a,b0,且a+b=1,求12a+1b的最小值 解析:a,b0,且a+b=1,由柯西不等知: 当且仅当 即时等号成立 练习 设,证明 证明:将从新排序设为 则有 而所需证目标: 结合柯西不等式得: 得结论柯西不等式在解题中的几点应
5、用一、 引言柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,我们在教学中应给予极大的重视。本文仅就使用柯西不等式的技巧做一粗略归纳。主要就是使用一些方法构造符合柯西不等式的形式及条件,继而达到使用柯西不等式证明有关的不等式人民教育出版社高中代数下册“不等式”一章的习题中有这样一道题(P、15练习第2题): 求证:ac+bd*这题用比较法是很容易证明的,这里用比值的方法来证明。证明:当a=b=c(或c=d=0)时,显然成立;假设+0 且+0,则=1故ac+bd(1) 式就是著名的柯西不等式的一个简单特例。柯西不等式的一般形式为:对任意的实数 (2)或 (3)其中等号当且仅当时
6、成立(当时,认为柯西不等式有许多证明方法,这里就不作证明,仅就如何利用柯西不等式解题作一些介绍。二、 柯西不等式在解题中的应用a) 利用柯西不等式证明恒等式利用柯西不等式来证明恒等式,主要是利用其取等号的充分必要条件来达到目的,或者是利用柯西不等式进行夹逼的方法获证。 例、已知求证:。证明:由柯西不等式,得当且仅当时,上式取等号,于是 。b) 利用柯西不等式解无理方程(或方程组)用柯西不等式解无理方程,是先把方程的(含有无理式的)运用柯西不等式化为不等式,然后结合原方程把不等式又化成等式,在判定为等式后再利用柯西不等式取等号的特性,得到与原方程同解的且比原方程简单的无理方程,进而得到简单的整式
7、方程,从而求得原方程的解。例:解方程 。解: = 由柯西不等式知即 当上式取等号时有成立,即(无实根) 或,即,经检验,原方程的根为用柯西不等式解方程组,也同样是利用柯西不等式取等号的条件,从而求得方程组的解。 例:解方程组解:原方程组可化为运用柯西不等式得, 两式相乘,得当且仅当x=y=z=w=3时取等号。故原方程组的解为x=y=z=w=3.c) 柯西不等式证明不等式。很多重要的不等式都可以由柯西不等式导出,而利用柯西不等式的技巧有很多。如常数的巧拆、结构的巧变、巧设数组等,下面略举一、二说明怎样利用柯西不等式证明不等式。有些问题本身不具备运用柯西不等式的条件,但是我们只要改变一下多项式的形
展开阅读全文