遥感原理与应用复习要点(详细版)(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《遥感原理与应用复习要点(详细版)(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 遥感原理与应用复习要点详细版DOC 19页 遥感 原理 应用 复习 要点 详细 DOC 19
- 资源描述:
-
1、遥感原理与应用复习要点1、 遥感的定义:在不直接接触的情况下,对目标物或自然现象远距离感知的一门探测技术。具体的讲:指在高空和外层空间的各种平台上,运用各种传感器获取反映地表特征的各种数据,通过传输,变换和处理,提取有用的信息,实现研究地物空间形状、位置、性质、变化及其与环境的相互关系的一门现代应用技术科学。2、遥感技术特点:a) 宏观性、综合性b) 多源性:多平台、多时相、多波段、多尺度c) 周期性、时效性3、遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输处理到分析判读、应用的完整技术系统。组成:目标地物的电磁波特性、信息的采集与获取、信息的传输和接收、地面定标及实况调查、
2、信息的处理和加工、信息的分析与应用。或者:(1)遥感试验:对电磁波特性、信息获取、传输和处理技术的试验。(2)遥感信息获取:遥感平台和传感器。(3)遥感信息处理:几何和辐射处理、影像分类等。(4)遥感信息应用:生成4D产品、各种专题图等。4、遥感的分类:(1)按工作平台分类:地面遥感、航空遥感、航天遥感。(2) 按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等(3)按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等(4)按照资料的记录方式:成像方式、非成像方式(5)按照传感器工作方式分类:主动遥感、被动遥感。5、当前遥感发展主要特点与展望:(1)多国发射卫星的局面已
3、经形成;(2)高分辨率小型商业卫星发展迅速;(3)星载主动式遥感的发展使探测手段更趋多样化;(4)高光谱分辨率传感器成为未来空间遥感发展的核心内容;(5)与GIS结合,使得遥感应用不断深化。第一章 电磁波及遥感物理基础1、 遥感之所以能够根据收集到的电磁波来判断地物目标和自然现象,是因为一切物体,由于其种类、特征和环境条件的不同,而具有完全不同的电磁波反射或发射辐射特征。2、 遥感信息获取,一般指收集、探测、记录地物的电磁波特征,即地物的发射辐射或反射电磁波特性。由于电磁波传播的是能量,实际上也是记录辐射能量的过程。3、 遥感采用的电磁波段可以从紫外线 一直到微波波段。4、 遥感就是根据感兴趣
4、的地物的波谱特性,选择相应的电磁波段,通过传感器探测不同的电磁波谱的发射或反射辐射能量而成像的。5、 电磁波谱:将电磁波在真空中传播的波长或频率、递增或递减依次排列为一个序谱,将此序谱称为电磁波谱。次序为:射线X射线紫外线可见光红外线微波无线电波。6、 7、 可见光(380nm760nm):蓝光: m、绿光: m、红光: m;近红外光:3um;中红外光:3um6um;远红外光:6um15um;微波:毫米波(110mm)、厘米波(110cm)、分米波(10cm1m)8、 黑体:对任何波长的电磁辐射都全吸收的假想的辐射体。9、 黑体辐射三大特性:(1)与曲线下的面积成正比的总辐射通量密度W 是随温
5、度T 的增加而迅速增加。(2)分谱辐射能量密度的峰值波长随温度的增加向短波方向移动。(维恩位移定律)(3)每根曲线彼此不相交,故温度T越高所有波长上的波谱辐射通量。在微波波段,黑体的微波辐射亮度与温度的一次方成正比。10、 小于3m的波长主要是太阳辐射的能量;大于6m的波长主要是地物本身的热辐射;3-6m之间,太阳和地球的热辐射都要考虑。11、 太阳是被动遥感最主要的辐射源,遥感传感器从空中或空间接收地物反射的电磁波。太阳辐射:5% 紫外线 45% 可见光 50% 红外线。被动遥感主要利用可见光、红外等稳定辐射,因而太阳的活动对遥感的影响没有太大影响,可以忽略。太阳能量的99%集中在4微米。1
6、2、 太阳辐射的特点:(1) 太阳光谱是连续的。(2)辐射特性与黑体基本一致。(3)近紫外到中红外波段区间能量集中、稳定。(4) 被动主要利用可见光、红外波段等稳定辐射。(5) 海平面处的太阳辐射照度分布曲线与大气层外的曲线有很大不同,这主要是地球大气层对太阳辐射的吸收和散射造成的。地球的电磁辐射:近似300K的黑体辐射。13、 在紫外、红外与微波区,电磁波衰减的主要原因是大气吸收。(1)引起大气吸收的主要成分:氧气、臭氧、水、二氧化碳。(2) 大气吸收的影响主要是造成遥感影像暗淡。(3)大气对紫外线有很强的吸收作用,因此,现阶段中很少使用紫外线波段。13、大气散射:辐射在传播过程中遇到小微粒
7、(气体分子或悬浮微粒等)而使传播方向改变,并向各个方向散开,从而减弱了原方向的辐射强度、增加了其他方向的辐射强度的现象。14、在可见光波段范围内,大气分子吸收的影响很小,主要是散射引起的衰减。(1)介质中不均匀颗粒的直径a与入射波长同数量级时,发生米氏散射(如气溶胶引起的)(2) 介质中不均匀颗粒的直径a 入射波长时,发生均匀散射(3) 介质中不均匀颗粒的直径a小于入射波长的十分之一时,发生瑞利散射。瑞利认为散射的强度I反比与4。15、天空呈蓝色:蓝光波长比红光短,因此蓝光散射较强,而红光较弱。在晴朗的天空,可见光中蓝光受散射影响最大,所以天空呈蓝色。太阳呈红色:清晨太阳光通过较厚的大气层,直
8、射光中红光成分大于蓝光成分,因而太阳呈红色。云呈白色:当天空有云层或雨层时,满足均匀反射的条件,各个波长的可见光散射强度相同,因而云呈现白色。微波穿透能力强:微波波长比粒子直径大属于瑞利散射,散射强度与波长的四次方成反比,波长越大散射越小,所以微波有最小散射最大透射,因而具有穿透云雾的能力。16、大气窗口:电磁波通过大气层时较少被反射、吸收和散射的,透过率较高的波段。有些大气中电磁波透过率很小,甚至完全无法透过电磁波。这些区域就难于或不能被遥感所使用,称为“大气屏障”;17、我们用发射率来表示它们之间的关系:= W/ W。发射率就是实际物体与同温度的黑体在相同条件下辐射功率之比。常常用一个最接
9、近灰体辐射曲线的黑体辐射曲线作为参照,这时的黑体辐射温度称为等效黑体辐射温度(或称等效辐射温度)18、基尔霍夫定律:在任一给定温度下,辐射通量密度与吸收率之比对任何材料都是一个常数,并等于该温度下黑体。推导出: = 任何材料的发射率等于其吸收率。(反射率)19、地物反射率:地物的反射能量与入射总能量的比,即=(P/P0 )100%。表征物体对电磁波谱的反射能力。20、地物反射波谱:反射波谱是某物体的反射率(或反射辐射能)随波长变化的规律,以波长为横坐标,反射率为纵坐标所得的曲线即称为该物体的反射波谱特性曲线。物体的反射波谱限于紫外、可见光和近红外,尤其是后两个波段。正因为不同地物在不同波段有不
10、同的反射率这一特性,物体的反射特性曲线才作为判读和分类的物理基础,广泛地应用于遥感影像的分析和评价中。21、 (22、 水体的反射波谱特性:(1) 水体的反射主要在蓝绿光波段;(2) 近红外、中红外波段有很强的吸收带,反射率几乎为零;(3)但是当水中含有其他物质时,反射光谱曲线会发生变化。植物对绿色发射作用强,在近红外有一个反射的陡坡,形成植被独有特征。23、 地物波谱特性是指各种地物各自所具有的电磁波特性(发射辐射或反射辐射)。测量地物的反射波谱特性曲线主要作用:(1)它是选择遥感波谱段、设计遥感仪器的依据(2)在外业测量中,它是选择合适的飞行时间的基础资料(3)它是有效地进行遥感图像数字处
11、理的前提之一,是用户判读、识别、分析遥感影像的基础。24、 测定原理:(1)对于不透明的物体,其发射率与反射率有下列关系:()=1- ()(2)各种地物发射辐射电磁波的特性可以通过间接地测试各种地物反射辐射电磁波的特性得到。因此,地物波谱特性通常是用地物反射辐射电磁波来描述,即地物反射波谱特性曲线。第二章 遥感平台及运行特点1、遥感平台:(platform)是搭载传感器的工具的统称。根据运载工具的类型,可分为航天平台、航空平台和地面平台。(天基、空基、地基)。根据航天遥感平台的服务内容,可以将其分为陆地卫星系列、气象卫星系列和海洋卫星系列。2、6个轨道参数:升交点赤经、近地点角距、轨道倾角i、
12、卫星过近地点时刻T、卫星轨道的长半轴a、卫星轨道的偏心率e。其中、i、T决定卫星轨道平面和赤道平面的相对位置,a、e决定轨道形状。3、卫星坐标的计算:星历表法解算卫星坐标:卫星在地心直角坐标系中的坐标、卫星在大地地心直角坐标系中的坐标、卫星的地理坐标;用GPS测定卫星坐标。4、卫星姿态角:定义卫星质心为坐标原点,沿轨道前进的切线方向为x轴,垂直轨道面的方向为y轴,垂直xy平面的为z轴,则卫星的姿态有三种情况:绕x轴旋转的姿态角,称之为滚动;绕y轴旋转的姿态角,称俯仰;绕z轴旋转的姿态角,称航偏。影像的几何变形与卫星姿态角有直接的关系,所以进行几何校正,必须提供卫星姿态角。5、卫星姿态角的测定:
13、姿态测量仪(利用地球与太空温差达287K这一特点):红外姿态测量仪、星相机、陀螺仪;恒星摄影机(至少摄取3-5颗五等以上的恒星);GPS (使用3台接收机测定姿态)。6、陆地卫星:用于陆地资源和环境探测的卫星称为陆地卫星。分类为:陆地卫星类(Landsat)、高分辨率陆地卫星、高光谱卫星、合成孔径雷达、小卫星。7、陆地卫星系列:Landsat系列、SPOT系列、IRS系列、ALOS系列。8、Landsat系列:轨道特点:近圆形轨道(使在不同地区获取的图像比例尺一致、使卫星速度近于均匀、便于扫描仪用固定扫描频率对地面扫描)、近极地轨道(有利于增大卫星对地面总的观测范围)、与太阳同步轨道(有利于卫
14、星在相近的光照条件下对地面进行观测,有利于卫星在固定的时间飞临地面接收站上空、有利于太阳电池得到稳定太阳照度)、可重复轨道(有利于对地面地物和自然现象的变化做动态监测)。9、遥感卫星一般有两种绕地球飞行方式:静止轨道和近极地轨道。静止轨道可以定点观测,而极地轨道(圆形)则可定期观测。地球静止轨道:又称“地球同步轨道”。地球同步轨道中倾角为0时的一种特殊圆形轨道。人造卫星与地面相对静止,固定在赤道上空。10、Landsat13:轨道高度915KM,重复周期18d,图像幅宽:185KM;传感器:反束光导管摄像机(RBV)、多光谱扫描仪(MSS 4bands)、宽带视频记录机(WBVTR)数据收集系
15、统(DCS)空间分辨率80米11、Landsat4-5:轨道高度下降为705KM,重复周期为16d,图像幅宽:185KM;传感器:多光谱扫描仪(MSS 4bands)、专题制图仪(TM 7bands)空间分辨力30米。14、 Landsat7:传感器:多光谱扫描仪(MSS 4bands)、增强型专题制图仪(ETM+ 7bands)空间分辨力30米全色波段分辨率为15米。15、 SPOT系列:重复周期26d、单台HRV图像幅宽60KM传感器:2台相同的高分辨率可见光扫描仪(HRV)、VI植被测量仪、Poam3极地臭氧和气溶胶测量仪分辨率:SPOT14:多光谱20m,全色10m;SPOT5:多光谱
16、10m 全色:5m 超级模式:SPOT5通过立体成像装置HRS可进行立体测量。16、 高空间分辨率陆地卫星:IKONOS 1/4(全色/多色,11KM) Quick Bird () Orbview-3 1/4 GeoEye(15KM) 。高光谱类卫星:17、 】18、 这类卫星的主要特点是采用高分辨率成像光谱仪,波段数为36256个,光谱分辨率为510nm,地面分辨率为301000m。MODIS(美国)、ASTER(美日)。19、 雷达类卫星:Radarsat(加拿大)、ERS(欧盟)、SRTM(美国)、LIDAR合成孔径雷达是一种高分辨率、二维成像雷达,特别适合大面积的地表成像。雷达成像的特
17、点:能穿透云雾、雨雪,全天候工作能力;弥补可见光和红外遥感的不足;电磁波振幅信号和相位信号;缺少纹理信息20、 小卫星:指目前设计质量小于500kg的小型近地轨道卫星,其空间分辨率为13m(全色)和4-15m(多波段),能进行立体测图。第三章 遥感传感器及其成像原理1、传感器分类:摄影类型的传感器、扫描成像类型的传感器、雷达成像类型的传感器、非图像类型的传感器。|2、扫描成像类传感器:(1)对物面扫描的成像仪:对地面直接扫描成像(红外扫描仪、多光谱扫描仪、成像光谱仪、TM、ETM+)(2)对像面扫描的成像仪:瞬间在像面上先形成一条线图像或一幅二维影像,然后对影像进行扫描成像(线阵列CCD推扫式
18、成像仪)。3、红外扫描仪的分辨率:瞬时视场,则空间分辨率为:由式子可以看出航高越大a及越大则地面分辨率越差4、有扫描角时: 则平行于航线方向的地面分辨率为 垂直于航向方向的分辨率为:5、全景畸变:由于地面分辨率随扫描角发生变化,使红外扫描影像产生畸变,这种畸变通常称之为全景畸变,形成原因是像距保持不变,总在焦面上,而物距随扫描角发生变化所致。(相当于行高H的变化引起的地面分辨率a的变化)。6、扫描线的衔接:a=Wt则刚好可以衔接,awt则有部分重叠。 结论:瞬时视场和扫描周期都为常数,所以只要速度w与航高H之比为一常数,就能使扫描线正确衔接,不出现条纹图像。7、热红外扫描仪对温度比对发射本领的
19、敏感性更高,因为它与温度的四次方成正比,温度的变化能产生较高的色调差别。8、MSS的每个像元的地面分辨率是79m*79m,每个波段有六个探测单元组成,474m*79m,扫描总视场是474m*185KM,恰好衔接。*9、TM专题制图仪:是一个高级的多波段扫描型的地球资源敏感仪器,与多波段扫描仪MSS性能相比,它具有更高的空间分辨力(除热红外是120m外30m),更好的频谱选择性,更好的几何保真度,更高的辐射准确度和分辨力。增加一个扫描改正器。另外使往返双向都对地面扫描。共7个波段。10、ETM+:辐射定标精度提高,辐射校正有了很大改进。8个波段,增加了PAN(全色)波段,分辨率15m,远红外波段
20、为60m。11、HRV(高分辨率可见光扫描仪)线阵列推扫式扫描仪,探测器件为CCD。是对像面的扫面成像方式。三个波谱段,每个波谱段的线阵列探测器组由3000个CCD元件组成。每个元件形成的像元地面分辨率为2020m。因此一行CCD探测器形成的图像线,相对地面上为2060km。12、成像光谱仪:以多路、连续并具有高光谱分辨率方式获取图像信息的仪器。通过将传统的空间成像技术和地物光谱技术有机地结合在一起,可以实现对同一地区同时获取几十个到几百个波段的地物反射光谱图像。基本上属于多光谱扫描仪,其构造与CCD线阵列推扫式扫描仪和多光谱扫描仪相同,区别仅在于通道数多,各通道的波段宽度很窄。13、雷达:属
21、于主动式微波遥感,穿透力强。真实孔径雷达(Radar)、合成孔径雷达(SAR)、相干雷达(INSAR)、激光雷达(LIDAR)。14、距离分辨率:在脉冲发射的方向上,能分辨的最小距离。与脉冲宽度有关,所以可以采用脉冲压缩技术来提高距离分辨率。方位分辨率:在雷达的飞行方向上,能分辨两个目标的最小距离。采用合成孔径技术来提高分辨率。合成孔径雷达的方位分辨力与距离无关,只与实际使用的天线孔径有关。15、侧视雷达图像的几何特点(1)垂直于飞行方向的比例尺变形:垂直飞行方向(y)的比例尺由小变大(2)压缩与拉长:造成山体前倾,朝向传感器的山坡影像被压缩,而背向传感器的山坡被拉长(3)高差产生的投影差:与
22、中心投影相反,位移量也不同(4)雷达立体图像的构像特点:从不同摄站对同一地区获取的雷达图像也能构成立体影像第四章 遥感图像数字处理的基础知识|1、图像的表示形式:(1)光学图像:一个二维的连续的光密度(透过率)函数。(2)数字图像:一个二维的离散的光密度(透过率)函数。用矩阵表示,坐标和密度函数都是离散的。2、光学图像与数字图像的转换:把一个连续的光密度函数变成一个离散的光密度函数空间坐标离散化采样 幅度(光密度)离散化量化 整个过程称为图像数字化。3、几个重要概念:采样:连续的图像在坐标空间的离散化。量化:图像在性质空间(灰度)的离散化。空间分辨率:连续图像在水平和垂直方向的采样数。亮度分辨
23、率(灰度等级):图像亮度层次的多少;用灰度级L = 2k表示,k可取1,2,3,4,5,6,7,8,11。当一幅图像有L = 2k灰度级时,称该图像是k比特( bit ) 图像。灰度图像:R = G = B彩色图像: R、G、B不一定相等。注意256色位图和24位真彩色图等描述方式的理解。4、图像可以表示到频率域中,通常采用傅里叶变换在两者间实现转换。5、遥感图像的坐标系统:地理坐标系(BJ54,西安80,WGS84等)、投影坐标系。6、遥感数据的存储介质:磁带、磁盘、光盘、闪存;存储格式:世界标准格式LTWG、BSQ(Band SeQuential):按照波段顺序依次记录各波段的图像、BIL
展开阅读全文