超级资源(共12套)2019年高考数学复习-热点-易错点-高考热点问题知识点汇总-(状元必备)(DOC 116页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《超级资源(共12套)2019年高考数学复习-热点-易错点-高考热点问题知识点汇总-(状元必备)(DOC 116页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超级资源共12套2019年高考数学复习-热点-易错点-高考热点问题知识点汇总-状元必备DOC 116页 超级 资源 12 2019 年高 数学 复习 热点 易错点 高考 热点问题 知识点 汇总 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、(共12套)2019年高考数学复习 热点 易错点 高考热点问题知识点汇总 (状元必备)热点探究课(一) 导数应用中的高考热点问题命题解读函数是中学数学的核心内容,导数是研究函数的重要工具,因此,导数的应用是历年高考的重点与热点,常涉及的问题有:讨论函数的单调性(求函数的单调区间)、求极值、求最值、求切线方程、求函数的零点或方程的根、求参数的范围、证明不等式等,涉及的数学思想有:函数与方程、分类讨论、数形结合、转化与化归思想等,中、高档难度均有热点1利用导数研究函数的单调性、极值与最值(答题模板)函数的单调性、极值是局部概念,函数的最值是整体概念,研究函数的性质必须在定义域内进行,因此,务必遵循
2、定义域优先的原则,本热点主要有三种考查方式:(1)讨论函数的单调性或求单调区间;(2)求函数的极值或最值;(3)利用函数的单调性、极值、最值,求参数的范围(本小题满分12分)(2015全国卷)已知函数f(x)ln xa(1x)(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a2时,求a的取值范围思路点拨(1)求出导数后对a分类讨论,然后判断单调性;(2)运用(1)的结论分析函数的最大值,对得到的不等式进行等价转化,通过构造函数并分析该函数的单调性求a的范围规范解答(1)f(x)的定义域为(0,),f(x)a. 2分若a0,则f(x)0,所以f(x)在(0,)上单调递增. 3
3、分若a0,则当x时,f(x)0;当x时,f(x)0时,f(x)在x取得最大值,最大值为flnaln aa1. 9分因此f2a2等价于ln aa10. 10分令g(a)ln aa1,则g(a)在(0,)上单调递增,g(1)0.于是,当0a1时,g(a)1时,g(a)0.因此,a的取值范围是(0,1). 12分答题模板讨论含参函数f(x)的单调性的一般步骤第一步:求函数f(x)的定义域(根据已知函数解析式确定)第二步:求函数f(x)的导数f(x)第三步:根据f(x)0的零点是否存在或零点的大小对参数分类讨论第四步:求解(令f(x)0或令f(x)0)当a0时,f(x)0,f(x)没有零点;当a0时,
4、设u(x)e2x,v(x), 3分因为u(x)e2x在(0,)上单调递增,v(x)在(0,)上单调递增,所以f(x)在(0,)上单调递增又f(a)0,当b满足0b且b时,f(b)0时,f(x)存在唯一零点. 5分(2)证明:由(1),可设f(x)在(0,)上的唯一零点为x0,当x(0,x0)时,f(x)0.故f(x)在(0,x0)上单调递减,在(x0,)上单调递增,所以当xx0时,f(x)取得最小值,最小值为f(x0).9分由于2e2x00,所以f(x0)2ax0aln2aaln .故当a0时,f(x)2aaln .12分角度2不等式恒成立问题(2016全国卷)已知函数f(x)(x1)ln x
5、a(x1)(1)当a4时,求曲线yf(x)在(1,f(1)处的切线方程;(2)若当x(1,)时,f(x)0,求a的取值范围解(1)f(x)的定义域为(0,).1分当a4时,f(x)(x1)ln x4(x1),f(1)0,f(x)ln x3,f(1)2.3分故曲线yf(x)在(1,f(1)处的切线方程为2xy20.5分(2)当x(1,)时,f(x)0等价于ln x0.设g(x)ln x,则g(x),g(1)0.9分当a2,x(1,)时,x22(1a)x1x22x10,故g(x)0,g(x)在(1,)单调递增,因此g(x)0;当a2时,令g(x)0得x1a1,x2a1.由x21和x1x21得x11
6、,故当x(1,x2)时,g(x)0,g(x)在(1,x2)单调递减,因此g(x)0.综上,a的取值范围是(,2.12分角度3存在型不等式成立问题(2014全国卷)设函数f(x)aln xx2bx(a1),曲线yf(x)在点(1,f(1)处的切线斜率为0.(1)求b;(2)若存在x01,使得f(x0)0,f(x)在(1,)单调递增所以,存在x01,使得f(x0)的充要条件为f(1),即1,解得1a1.7分若a1,故当x时,f(x)0,f(x)在上单调递减,在上单调递增.9分所以存在x01,使得f(x0)的充要条件为f,所以不合题意若a1,则f(1)10)的最小正周期为2,并且当x时,f(x)ma
7、x2.(1)求f(x)的解析式;(2)在闭区间上是否存在f(x)的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由解(1)因为f(x)sin(x),由它的最小正周期为2,知2,.2分又因为当x时,f(x)max2,知2k(kZ),2k(kZ),4分所以f(x)2sin2sin(kZ)故f(x)的解析式为f(x)2sin.5分(2)当垂直于x轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令xk(kZ),解得xk(kZ).7分由k,解得k,9分又kZ,知k5,10分由此可知在闭区间上存在f(x)的对称轴,其方程为x.12分热点2解三角形从近几年全国卷来看,高考命题强化
8、了解三角形的考查力度,着重考查正弦定理、余弦定理的综合应用,求解的关键是实施边角互化,同时结合三角恒等变换进行化简与求值(2015全国卷)ABC中,D是BC上的点,AD平分BAC,ABD面积是ADC面积的2倍(1)求;(2)若AD1,DC,求BD和AC的长解(1)SABDABADsinBAD,SADCACADsinCAD.2分因为SABD2SADC,BADCAD,所以AB2AC.由正弦定理,得.5分(2)因为SABDSADCBDDC,所以BD.7分在ABD和ADC中,由余弦定理,知AB2AD2BD22ADBDcosADB,AC2AD2DC22ADDCcosADC.9分故AB22AC23AD2B
9、D22DC26.由(1),知AB2AC,所以AC1.12分规律方法解三角形问题要关注正弦定理、余弦定理、三角形内角和定理、三角形面积公式,要适时、适度进行“角化边”或“边化角”,要抓住能用某个定理的信息一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则两个定理都有可能用到对点训练2(2016北京高考)在ABC中,a2c2b2ac.(1)求B的大小;(2)求cos Acos C的最大值解(1)由余弦定理及题设得,cos B.3分又因为0B,所以B.5分(2)由(1)知AC,则cos Acos Ccos Aco
10、scos Acos Asin Acos Asin Acos.8分因为0A,所以当A时,cos Acos C取得最大值1.12分热点3三角恒等变换与解三角形的综合问题以三角形为载体,三角恒等变换与解三角形交汇命题,是近几年高考试题的一大亮点,主要考查和、差、倍角公式以及正、余弦定理的综合应用,求解的关键是根据题目提供的信息,恰当地实施边角互化(2017东北三省四市一联)在ABC中,角A,B,C的对边分别为a,b,c,已知.(1)求的值;(2)若角A是钝角,且c3,求b的取值范围解(1)由题意及正弦定理得sin Ccos B2sin Ccos A2sin Acos Csin Bcos C,2分si
展开阅读全文
链接地址:https://www.163wenku.com/p-5640325.html