书签 分享 收藏 举报 版权申诉 / 19
上传文档赚钱

类型高考文科数学复习第轮-极坐标与参数方程(DOC 18页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5639623
  • 上传时间:2023-04-28
  • 格式:DOC
  • 页数:19
  • 大小:613.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高考文科数学复习第轮-极坐标与参数方程(DOC 18页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    高考文科数学复习第轮-极坐标与参数方程DOC 18页 高考 文科 数学 复习 坐标 参数 方程 DOC 18 下载 _其它资料_高考专区_数学_高中
    资源描述:

    1、高考文科数学一轮复习(极坐标与参数方程) 第二讲 极坐标与参数方程目标认知考试大纲要求:1. 理解坐标系的作用,了解在平面直角坐标系伸缩变换作用下平面图形的变化情况;2. 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化;3. 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义;4. 了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别;5. 了解参

    2、数方程,了解参数的意义,能选择适当的参数写出直线、圆和圆锥曲线的参数方程;6. 了解平摆线、渐开线的生成过程,并能推导出它们的参数方程,了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。重点、难点:1理解参数方程的概念,了解常用参数方程中参数的意义,掌握参数方程与普通方程的互化。2理解极坐标的概念,掌握极坐标与直角坐标的互化;直线和圆的极坐标方程。【知识要点梳理】:知识点一:极坐标1极坐标系平面内的一条规定有单位长度的射线,为极点,为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系。2极坐标系内一点的极坐标平面上一点到极点的距离称为极

    3、径,与轴的夹角称为极角,有序实数对就叫做点的极坐标。(1)一般情况下,不特别加以说明时表示非负数; 当时表示极点; 当时,点的位置这样确定:作射线, 使,在的反向延长线上取一点,使得,点即为所求的点。(2)点与点()所表示的是同一个点,即角与的终边是相同的。 综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对应, 即,, 均表示同一个点.3. 极坐标与直角坐标的互化 当极坐标系与直角坐标系在特定条件下(极点与原点重合;极轴与轴正半轴重合;长度单位相同),平面上一个点的极坐标和直角坐标有如下关系:直角坐标化极坐标:;极坐标化直角坐标:.此即在两个坐标系下,同一个点的两种坐标间

    4、的互化关系.4. 直线的极坐标方程:(1)过极点倾斜角为的直线:或写成及.(2)过垂直于极轴的直线:5. 圆的极坐标方程:(1)以极点为圆心,为半径的圆:.(2)若,以为直径的圆:知识点二:柱坐标系与球坐标系:1. 柱坐标系的定义:空间点与柱坐标之间的变换公式:2. 球坐标系的定义:空间点与球坐标之间的变换公式:知识点三:参数方程1. 概念:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标都是某个变数的函数:,并且对于的每一个允许值,方程所确定的点都在这条曲线上,那么方程就叫做这条曲线的参数方程,联系间的关系的变数叫做参变数(简称参数).相对于参数方程来说,前面学过的直接给出曲线上点的坐标

    5、关系的方程,叫做曲线的普通方程。知识点四:常见曲线的参数方程1直线的参数方程(1)经过定点,倾斜角为的直线的参数方程为: (为参数);其中参数的几何意义:,有,即表示直线上任一点M到定点的距离。(当在上方时,在下方时,)。 (2)过定点,且其斜率为的直线的参数方程为: (为参数,为为常数,);其中的几何意义为:若是直线上一点,则。2圆的参数方程(1)已知圆心为,半径为的圆的参数方程为: (是参数,); 特别地当圆心在原点时,其参数方程为(是参数)。(2)参数的几何意义为:由轴的正方向到连接圆心和圆上任意一点的半径所成的角。 (3)圆的标准方程明确地指出圆心和半径,圆的一般方程突出方程形式上的特

    6、点,圆的参数方程则直接指出圆上点的横、纵坐标的特点。3. 椭圆的参数方程(1)椭圆()的参数方程(为参数)。(2)参数的几何意义是椭圆上某一点的离心角。 如图中,点对应的角为(过作轴, 交大圆即以为直径的圆于),切不可认为是。(3)从数的角度理解,椭圆的参数方程实际上是关于椭圆的一组三角代换。 椭圆上任意一点可设成, 为解决有关椭圆问题提供了一条新的途径。4. 双曲线的参数方程双曲线(,)的参数方程为(为参数)。5. 抛物线的参数方程抛物线()的参数方程为(是参数)。参数的几何意义为:抛物线上一点与其顶点连线的斜率的倒数,即。规律方法指导:1、把参数方程化为普通方程,需要根据其结构特征,选取适

    7、当的消参方法. 常见的消参方法有:代入消法 ;加减消参;平方和(差)消参法;乘法消参法;比值消参法;利用恒等式消参法;混合消参法等.2、把曲线的普通方程化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性, 注意方程中的参数的变化范【课前演练】一、选择题1.已知集合,则= Ax|-1x1 Bx |x1 Cx|-1x1 Dx |x-12.若复数(1+bi)(2+i)是纯虚数(i是虚数单位,b是实数),则b=A-2 B C. D23.若函数f(x)=x3(xR),则函数y=f(-x)在其定义域上是 A单调递减的偶函数 B.单调递减的奇函数 C单凋递增的偶函数 D单涮递增的奇函数4若向

    8、量满足,与的夹角为,则 A B C. D25客车从甲地以60kmh的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80kmh的速度匀速行驶l小时到达丙地。下列描述客车从甲地出发,经过乙地,最后到达 丙地所经过的路程s与时间t之间关系的图象中,正确的是二、填空题11在平面直角坐标系xOy中,已知抛物线关于x轴对称,顶点在原点O,且过点P(2,4),则该抛物线的方程是 12函数f(x)=xlnx(x0)的单调递增区间是 13已知数列an的前n项和Sn=n2-9n,则其通项an= ;若它的第k项满足5ak8,则k= 14(坐标系与参数方程选做题)在极坐标系中,直线l的方程为sin=3,则点(

    9、2,/6)到直线l的距离为 15(几何证明选讲选做题)如图4所示,圆O的直径AB=6,C为圆周上一点,BC=3过C作圆的切线l,过A作l的垂线AD,垂足为D, 则DAC= 【经典例题精析】类型二:参数方程与普通方程互化4把参数方程化为普通方程(1) (,为参数); (2) (,为参数);(3)(,为参数); (4) (为参数).思路点拨:(1)将第二个式子变形后,把第一个式子代入消参;(2)利用三角恒等式进行消参;(3)观察式子的结构,注意到两式中分子分母的结构特点,因而可以采取加减消参的办法;或把用表示,反解出后再代入另一表达式即可消参;(4)此题是(3)题的变式,仅仅是把换成而已,因而消参

    10、方法依旧,但需要注意、的范围。总结升华:1. 消参的方法主要有代入消参,加减消参,比值消参,平方消参,利用恒等式消参等。2.消参过程中应注意等价性,即应考虑变量的取值范围,一般来说应分别给出、的范围.在这过程中实际上是求函数值域的过程,因而可以综合运用求值域的各种方法.举一反三:【变式1】化参数方程为普通方程。(1)(t为参数) ; (2)(t为参数).【变式2】(1)圆的半径为_ ;(2)参数方程(表示的曲线为( )。 A、双曲线一支,且过点 B、抛物线的一部分,且过点 C、双曲线一支,且过点D、抛物线的一部分,且过点【变式3】(1)直线: (t为参数)的倾斜角为( )。A、 B、 C、 D

    11、、 (2)为锐角,直线的倾斜角( )。 A、 B、 C、 D、5已知曲线的参数方程(、为常数)。 (1)当为常数(),为参数()时,说明曲线的类型; (2)当为常数且,为参数时,说明曲线的类型。思路点拨:通过消参,化为普通方程,再做判断。总结升华:从本例可以看出:某曲线的参数方程形式完全相同,但选定不同的字母为参数,则表示的意义也不相同,表示不同曲线。因此在表示曲线的参数方程时,一般应标明选定的字母参数。举一反三:【变式】已知圆锥曲线方程为。(1)若为参数,为常数,求此曲线的焦点到准线距离。(2)若为参数,为常数,求此曲线的离心率。【课堂检测】选择题椭圆的两个焦点坐标是( )。 A(-3, 5

    12、),(-3, -3) B(3, 3),(3, -5) C(1, 1),(-7, 1) D(7, -1),(-1, -1)六、1若直线的参数方程为,则直线的斜率为( )A BC D2下列在曲线上的点是( )A B C D 3将参数方程化为普通方程为( )A B C D 6极坐标方程表示的曲线为( )A一条射线和一个圆 B两条直线 C一条直线和一个圆 D一个圆七、1直线的参数方程为,上的点对应的参数是,则点与之间的距离是( )A B C D 2参数方程为表示的曲线是( )A一条直线 B两条直线 C一条射线 D两条射线3直线和圆交于两点,则的中点坐标为( )A B C D 5与参数方程为等价的普通方

    13、程为( )A B C D 6直线被圆所截得的弦长为( )A B C D 八、1把方程化为以参数的参数方程是( )A B C D 2曲线与坐标轴的交点是( )A B C D 3直线被圆截得的弦长为( )A B C D 4若点在以点为焦点的抛物线上,则等于( )A B C D 6在极坐标系中与圆相切的一条直线的方程为( )A B C D填空题参、把参数方程(为参数)化为普通方程,结果是。六、1直线的斜率为_。2参数方程的普通方程为_。3已知直线与直线相交于点,又点,则_。4直线被圆截得的弦长为_。七、1曲线的参数方程是,则它的普通方程为_。2直线过定点_。3点是椭圆上的一个动点,则的最大值为_。4曲线的极坐标方程为,则曲线的直角坐标方程为_。5设则圆的参数方程为_。八、1已知曲线上的两点对应的参数分别为,那么=_。2直线上与点的距离等于的点的坐标是_。3圆的参数方程为,则此圆的半径为_。4极坐标方程分别为与的两个圆的圆心距为_。5直线与圆相切,则_。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高考文科数学复习第轮-极坐标与参数方程(DOC 18页).doc
    链接地址:https://www.163wenku.com/p-5639623.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库