2.2-直接证明与间接证明(人教A选修1-2)1.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2.2-直接证明与间接证明(人教A选修1-2)1.ppt》由用户(hwpkd79526)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.2 直接 证明 间接 人教 选修
- 资源描述:
-
1、2.22.2直接证明与间接证明直接证明与间接证明2.2.1 2.2.1 综合法和分析法综合法和分析法推理推理合情推理合情推理演绎推理演绎推理归纳归纳(特殊特殊到到一般一般)类比类比(特殊特殊到到特殊特殊)三段论三段论(一般一般到到特殊特殊)复习复习 合情推理的结论不一定正确,有待证明;演绎推理得到的结论一定正确.例例1 1:已知:已知a0,b0,a0,b0,求证求证a(ba(b2 2+c+c2 2)+b(c)+b(c2 2+a+a2 2)4abc4abc因为因为b b2 2+c+c2 2 2bc,a02bc,a0所以所以a(ba(b2 2+c+c2 2)2abc.2abc.又因为又因为c c2
2、 2+b+b2 2 2bc,b02bc,b0所以所以b(cb(c2 2+a+a2 2)2abc.2abc.因此因此a(ba(b2 2+c+c2 2)+b(c)+b(c2 2+a+a2 2)4abc.4abc.证明证明:1。综合法。综合法利用已知条件和某些数学定义、公理、利用已知条件和某些数学定义、公理、定理等定理等,经过一系列的推理论证经过一系列的推理论证,最后推最后推导出所要证明的结论成立导出所要证明的结论成立,这种证明方这种证明方法叫做法叫做综合法综合法用用P P表示已知条件、已有的定义、公理、表示已知条件、已有的定义、公理、定理等定理等,Q,Q表示所要证明的结论表示所要证明的结论.则综合
3、法用框图表示为则综合法用框图表示为:1 1P PQ Q1 12 2Q QQ Q2 23 3Q QQ Qn nQ QQ Q特点:“由因导果”综合法又叫由因导果法或顺推证法综合法又叫由因导果法或顺推证法.例例2 2:在:在中,三个内角、对应的边分中,三个内角、对应的边分别为别为a a、b b、c c,且、成等差数列,且、成等差数列,a a、b b、c c成成等比数列,求证等比数列,求证为等边三角形为等边三角形证明:由证明:由A,B,C成等差数列,有成等差数列,有2B=A+C,-因为因为A,B,C是三角形的内角,所以是三角形的内角,所以A+B+C=180o,-所以所以B=60o。-由由a,b,c成等
4、比数列,有成等比数列,有b2=ac,-则则b2=a2+c2-2accosB=a2+c2-ac,再有再有得得a2+c2-ac=ac,即,即(a-c)2=0 因此因此a=c。从而有。从而有A=C-则由则由 得得A=B=C=60o。所以三角形所以三角形ABC是等边三角形。是等边三角形。利用已知条件和某些数学定义、公理、利用已知条件和某些数学定义、公理、定理等定理等,经过一系列的推理论证经过一系列的推理论证,最后推最后推导出所要证明的结论成立导出所要证明的结论成立,这种证明方这种证明方法叫做法叫做综合法综合法用用P P表示已知条件、已有的定义、公理、表示已知条件、已有的定义、公理、定理等定理等,Q,Q
5、表示所要证明的结论表示所要证明的结论.则综合法用框图表示为则综合法用框图表示为:1 1P PQ Q1 12 2Q QQ Q2 23 3Q QQ Qn nQ QQ Q小结小结综合法的定义综合法的定义:回顾基本不等式:回顾基本不等式:(a0,b0)(a0,b0)的证明的证明.a a+b ba a b b2 2证明证明:因为因为;所以所以所以所以所以所以 成立成立()b 20a a 20a a+b ba ab b 2a a+b ba ab b a a+b ba ab b2 2证明证明:要证要证;只需证只需证;只需证只需证;只需证只需证;因为因为;成立成立所以所以 成立成立 a a+b ba ab b
6、2 2 2a a+b ba ab b 20a a+b ba ab b()b 20a a()b 20a aa a+b ba ab b2 2 一般地,从要证明的结论出发,逐步寻求一般地,从要证明的结论出发,逐步寻求推证过程中,使每一步结论成立的充分条件,推证过程中,使每一步结论成立的充分条件,直至最后,把要证明的结论归结为判定一个明直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理显成立的条件(已知条件、定理、定义、公理等)为止,这种证明的方法叫做等)为止,这种证明的方法叫做分析法分析法 特点:特点:执果索因执果索因.用框图表示分析法的思考过程、特点用框图表示分析法的
7、思考过程、特点.1 1QPQP2323PPPP1212PPPP得到一个明显得到一个明显成立的结论成立的结论分析法又叫执果索因法或叫逆推证法分析法又叫执果索因法或叫逆推证法例例3:求证求证372 5证明:因为证明:因为 都是正数,都是正数,372 5和所以为了证明所以为了证明 372 5只需证明只需证明 22(37)(2 5)展开得展开得102 2120即即215只需证明只需证明2125,因为,因为2125成立,成立,所以不等式所以不等式 成立。成立。372 52 22 22 22 22 2例例.已已 知知 ,k k+(k kZ Z),且且2 2 s si in n+c co os s=2 2s
展开阅读全文