运筹学考试试题答案与整理出来的复习题(DOC 83页).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《运筹学考试试题答案与整理出来的复习题(DOC 83页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 运筹学考试试题答案与整理出来的复习题DOC 83页 运筹学 考试 试题答案 整理 出来 复习题 DOC 83
- 资源描述:
-
1、5、线性规划数学模型具备哪几个要素? 答:(1).求一组决策变量xi或xij的值(i =1,2,m j=1,2n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数 第二章 线性规划的基本概念一、填空题1线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。2图解法适用于含有两个变量的线性规划问题。3线性规划问题的可行解是指满足所有约束条件的解。4在线性规划问题的基本解中,所有的非基变量等于零。5在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6若线性规划问题有最优解,则最优解一定可以在可
2、行域的顶点(极点)达到。7线性规划问题有可行解,则必有基可行解。8如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。9满足非负条件的基本解称为基本可行解。10在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。11将线性规划模型化成标准形式时,“”的约束条件要在不等式左_端加入松弛变量。12线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。13线性规划问题可分为目标函数求极大值和极小_值两类。14线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。15线性规划问题的基可行解
3、与可行域顶点的关系是顶点多于基可行解 16在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。 17求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。18.如果某个约束条件是“”情形,若化为标准形式,需要引入一松弛变量。19.如果某个变量Xj为自由变量,则应引进两个非负变量Xj , Xj, 同时令XjXj Xj。20.表达线性规划的简式中目标函数为max(min)Z=cijxij。21.(2.1 P5)线性规划一般表达式中,aij表示该元素位置在i行j列。二、单选题1 如果一个线性规划问题有n个变量,m个约束方程(mn),系
4、数矩阵的数为m,则基可行解的个数最为_C_。Am个 Bn个 CCnm DCmn个2下列图形中阴影部分构成的集合是凸集的是 A 3线性规划模型不包括下列_ D要素。A目标函数 B约束条件 C决策变量 D状态变量4线性规划模型中增加一个约束条件,可行域的范围一般将_B_。A增大 B缩小 C不变 D不定5若针对实际问题建立的线性规划模型的解是无界的,不可能的原因是B_。A出现矛盾的条件 B缺乏必要的条件 C有多余的条件 D有相同的条件6在下列线性规划问题的基本解中,属于基可行解的是 D A(一1,0,O)T B(1,0,3,0)T C(一4,0,0,3)T D(0,一1,0,5)T7关于线性规划模型
5、的可行域,下面_B_的叙述正确。A可行域内必有无穷多个点B可行域必有界C可行域内必然包括原点D可行域必是凸的8下列关于可行解,基本解,基可行解的说法错误的是_D_.A可行解中包含基可行解 B可行解与基本解之间无交集C线性规划问题有可行解必有基可行解 D满足非负约束条件的基本解为基可行解 9.线性规划问题有可行解,则 A A 必有基可行解 B 必有唯一最优解 C 无基可行解 D无唯一最优解10.线性规划问题有可行解且凸多边形无界,这时 C A没有无界解 B 没有可行解 C 有无界解 D 有有限最优解11.若目标函数为求max,一个基可行解比另一个基可行解更好的标志是 A A使Z更大 B 使Z更小
6、 C 绝对值更大 D Z绝对值更小12.如果线性规划问题有可行解,那么该解必须满足 D A 所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求13.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在D集合中进行搜索即可得到最优解。A 基 B 基本解 C 基可行解 D 可行域14.线性规划问题是针对 D求极值问题.A约束 B决策变量 C 秩 D目标函数15如果第K个约束条件是“”情形,若化为标准形式,需要 B A左边增加一个变量 B右边增加一个变量 C左边减去一个变量D右边减去一个变量16.若某个bk0, 化为标准形式时原不等式 D A 不变 B 左端乘负1 C 右端乘
7、负1 D 两边乘负1 17.为化为标准形式而引入的松弛变量在目标函数中的系数应为 A A 0 B 1 C 2 D 312.若线性规划问题没有可行解,可行解集是空集,则此问题 B A 没有无穷多最优解 B 没有最优解 C 有无界解 D 有无界解三、多选题1 在线性规划问题的标准形式中,不可能存在的变量是D .A可控变量B松驰变量c剩余变量D人工变量 2下列选项中符合线性规划模型标准形式要求的有BCD A目标函数求极小值B右端常数非负C变量非负D约束条件为等式E约束条件为“”的不等式3某线性规划问题,n个变量,m个约束方程,系数矩阵的秩为m(m0对应的非基变量xk的系数列向量Pk_0_时,则此问题
8、是无界的。12在线性规划问题的典式中,基变量的系数列向量为单位列向量_13.对于求极小值而言,人工变量在目标函数中的系数应取-1 14.(单纯形法解基的形成来源共有三 种15.在大M法中,M表示充分大正数。二、单选题1线性规划问题C2在单纯形迭代中,出基变量在紧接着的下一次迭代中B立即进入基底。A会 B不会 C有可能 D不一定3在单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中B。A不影响解的可行性B至少有一个基变量的值为负C找不到出基变量D找不到进基变量4用单纯形法求解极大化线性规划问题中,若某非基变量检验数为零,而其他非基变量检验数全部0,则说明本问题B 。A有惟一最优解 B
9、有多重最优解 C无界 D无解5线性规划问题maxZ=CX,AX=b,X0中,选定基B,变量Xk的系数列向量为Pk,则在关于基B的典式中,Xk的系数列向量为_ D ABPK BBTPK CPKB DB-1PK6下列说法错误的是B A 图解法与单纯形法从几何理解上是一致的 B在单纯形迭代中,进基变量可以任选C在单纯形迭代中,出基变量必须按最小比值法则选取 D人工变量离开基底后,不会再进基7.单纯形法当中,入基变量的确定应选择检验数 C A绝对值最大 B绝对值最小 C 正值最大 D 负值最小8.在单纯形表的终表中,若若非基变量的检验数有0,那么最优解 A A 不存在 B 唯一 C 无穷多 D 无穷大
10、9.若在单纯形法迭代中,有两个Q值相等,当分别取这两个不同的变量为入基变量时,获得的结果将是 C A 先优后劣 B 先劣后优 C 相同 D 会随目标函数而改变 10.若某个约束方程中含有系数列向量为单位向量的变量,则该约束方程不必再引入 C A 松弛变量 B 剩余变量 C 人工变量 D 自由变量11.在线性规划问题的典式中,基变量的系数列向量为 D A 单位阵 B非单位阵 C单位行向量 D单位列向量12.在约束方程中引入人工变量的目的是 D A 体现变量的多样性 B 变不等式为等式 C 使目标函数为最优 D 形成一个单位阵13.出基变量的含义是 D A 该变量取值不变 B该变量取值增大 C 由
11、0值上升为某值 D由某值下降为0 14.在我们所使用的教材中对单纯形目标函数的讨论都是针对 B 情况而言的。 A min B max C min + max D min ,max任选15.求目标函数为极大的线性规划问题时,若全部非基变量的检验数O,且基变量中有人工变量时该问题有 B A无界解 B无可行解 C 唯一最优解 D无穷多最优解三、多选题1 对取值无约束的变量xj。通常令xj=xj- x”j,其中xj0,xj”0,在用单纯形法求得的最优解中,可能出现的是ABC 2线性规划问题maxZ=x1+CX2 其中4c6,一1a3,10b12,则当_ BC时,该问题的最优目标函数值分别达到上界或下界
12、。 Ac=6 a=-1 b=10 Bc=6 a=-1 b=12 Cc=4 a=3 b=12 Dc=4 a=3 b=12 Ec=6 a=3 b=123设X(1),X(2)是用单纯形法求得的某一线性规划问题的最优解,则说明ACDE。A此问题有无穷多最优解 B该问题是退化问题 C此问题的全部最优解可表示为X(1)+(1一)X(2),其中01 DX(1),X(2)是两个基可行解EX(1),X(2)的基变量个数相同4某线性规划问题,含有n个变量,m个约束方程,(mn),系数矩阵的秩为m,则ABD 。A该问题的典式不超过CNM个B基可行解中的基变量的个数为m个C该问题一定存在可行解D该问题的基至多有CNM
13、=1个E该问题有111个基可行解5单纯形法中,在进行换基运算时,应ACDE。A先选取进基变量,再选取出基变量B先选出基变量,再选进基变量C进基变量的系数列向量应化为单位向量 D旋转变换时采用的矩阵的初等行变换E出基变量的选取是根据最小比值法则 6从一张单纯形表中可以看出的内容有ABCE。A一个基可行解B当前解是否为最优解C线性规划问题是否出现退化D线性规划问题的最优解E线性规划问题是否无界7.单纯形表迭代停止的条件为( AB )A 所有j均小于等于0 B 所有j均小于等于0且有aik0 C 所有aik0 D 所有bi0 8.下列解中可能成为最优解的有( ABCDE )A 基可行解 B 迭代一次
14、的改进解 C迭代两次的改进解 D迭代三次的改进解E 所有检验数均小于等于0且解中无人工变量9、若某线性规划问题有无穷多最优解,应满足的条件有( BCE )A PkPk0 B非基变量检验数为零 C基变量中没有人工变量 DjO E所有j010.下列解中可能成为最优解的有( ABCDE )A基可行解 B迭代一次的改进解 C迭代两次的改进解 D迭代三次的改进解E所有检验数均小于等于0且解中无人工变量四、名词、简答1、人造初始可行基:当我们无法从一个标准的线性规划问题中找到一个m阶单位矩阵时,通常在约束方程中引入人工变量,而在系数矩阵中凑成一个m阶单位矩阵,进而形成的一个初始可行基称为人造初始可行基。2
15、、单纯形法解题的基本思路? 可行域的一个基本可行解开始,转移到另一个基本可行解,并且使目标函数值逐步得到改善,直到最后球场最优解或判定原问题无解。五、分别用图解法和单纯形法求解下列线性规划问题并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。 八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“”,X3,X4为松驰变量表中解代入目标函数后得Z=10XlX2X3X410b-1fgX32CO115Xlade01(1)求表中ag的值 (2)
16、表中给出的解是否为最优解?(1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=5 (2) 表中给出的解为最优解 第四章 线性规划的对偶理论一、填空题 1线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求最小值/极小值的线性规划问题与之对应,反之亦然。2在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的目标函数系数。3如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为等式_。4对偶问题的对偶问题是原问题_。5若原问题可行,但目标函数无界,则对偶问题不可行。6若某种资源的影子价格等于k。在其他条件不变的情况下(假设原问题的最佳基不变),当该种资源增加3
展开阅读全文