书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型概率论与数理统计试题库及答案(DOC 31页).docx

  • 上传人(卖家):2023DOC
  • 文档编号:5630566
  • 上传时间:2023-04-28
  • 格式:DOCX
  • 页数:33
  • 大小:493.37KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《概率论与数理统计试题库及答案(DOC 31页).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    概率论与数理统计试题库及答案DOC 31页 概率论 数理统计 试题库 答案 DOC 31
    资源描述:

    1、2103最新概率论与数理统计试题库及答案试题一、填空题1设 是来自总体 的简单随机样本,已知,令 ,则统计量服从分布为(必须写出分布的参数)。2设,而1.70,1.75,1.70,1.65,1.75是从总体中抽取的样本,则的矩估计值为。3设,是从总体中抽取的样本,求的矩估计为。4已知,则。5和都是参数a的无偏估计,如果有 成立 ,则称是比有效的估计。6设样本的频数分布为X01234频数13212则样本方差=_。7设总体XN(,),X1,X2,Xn为来自总体X的样本,为样本均值,则D()_。8设总体X服从正态分布N(,),其中未知,X1,X2,Xn为其样本。若假设检验问题为,则采用的检验统计量应

    2、_。9设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2,,xn)落入W的概率为0.15,则犯第一类错误的概率为_。10设样本X1,X2,Xn来自正态总体N(,1),假设检验问题为:则在H0成立的条件下,对显著水平,拒绝域W应为_。11设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n至少要取_。12设为来自正态总体的一个简单随机样本,其中参数和均未知,记,则假设:的检验使用的统计量是。(用和表示)13设总体,且已知、未知,设是来自该总体的一个样本,则,中是统计量的有。1

    3、4设总体的分布函数,设为来自该总体的一个简单随机样本,则的联合分布函数。15设总体服从参数为的两点分布,()未知。设是来自该总体的一个样本,则中是统计量的有。16设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是。17设,且与相互独立,设为来自总体的一个样本;设为来自总体的一个样本;和分别是其无偏样本方差,则服从的分布是。18设,容量,均值,则未知参数的置信度为0.95的置信区间是 (查表)19设总体,X1,X2,Xn为来自总体X的样本,为样本均值,则D()_。20设总体X服从正态分布N(,),其中未知,X1,X2,Xn为其样本。若假设检验问题为,则采用的

    4、检验统计量应_。21设是来自正态总体的简单随机样本,和均未知,记,则假设的检验使用统计量。22设和分别来自两个正态总体和的样本均值,参数,未知,两正态总体相互独立,欲检验 ,应用检验法,其检验统计量是。23设总体,为未知参数,从中抽取的容量为的样本均值记为,修正样本标准差为,在显著性水平下,检验假设,的拒绝域为,在显著性水平下,检验假设(已知),的拒绝域为。24设总体为其子样,及的矩估计分别是。25设总体是来自的样本,则的最大似然估计量是。26设总体,是容量为的简单随机样本,均值,则未知参数的置信水平为的置信区间是。27测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下: +2,+

    5、1,-2,+3,+2,+4,-2,+5,+3,+4 则零件尺寸偏差的数学期望的无偏估计量是28设是来自正态总体的样本,令 则当时。29设容量n = 10 的样本的观察值为(8,7,6,9,8,7,5,9,6),则样本均值=,样本方差=30设X1,X2,Xn为来自正态总体的一个简单随机样本,则样本均值服从二、选择题1.是来自总体的一部分样本,设:,则( )2.已知是来自总体的样本,则下列是统计量的是( ) +A +10 +53.设和分别来自两个相互独立的正态总体和的样本,和分别是其样本方差,则下列服从的统计量是( )4.设总体,为抽取样本,则是( )的无偏估计 的无偏估计 的矩估计 的矩估计5、

    6、设是来自总体的样本,且,则下列是的无偏估计的是( )6设为来自正态总体的一个样本,若进行假设检验,当_ _时,一般采用统计量(A) (B)(C)(D)7在单因子方差分析中,设因子A有r个水平,每个水平测得一个容量为的样本,则下列说法正确的是_ _ (A)方差分析的目的是检验方差是否相等(B)方差分析中的假设检验是双边检验(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异8在一次假设检验中,下列说法正确的是_(A)既可能犯第一类错误也可能犯第二类错误(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误(C)增大样本容量,则

    7、犯两类错误的概率都不变(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误9对总体的均值和作区间估计,得到置信度为95%的置信区间,意义是指这个区间(A)平均含总体95%的值(B)平均含样本95%的值(C)有95%的机会含样本的值(D)有95%的机会的机会含的值10在假设检验问题中,犯第一类错误的概率的意义是()(A)在H0不成立的条件下,经检验H0被拒绝的概率(B)在H0不成立的条件下,经检验H0被接受的概率(C)在H00成立的条件下,经检验H0被拒绝的概率(D)在H0成立的条件下,经检验H0被接受的概率11. 设总体服从正态分布是来自的样本,则的最大似然估计为(A) (B

    8、) (C) (D)12.服从正态分布,是来自总体的一个样本,则服从的分布为_。(A)N(,5/n) (B)N(,4/n) (C)N(/n,5/n) (D)N(/n,4/n)13设为来自正态总体的一个样本,若进行假设检验,当_ _时,一般采用统计量(A)(B)(C)(D)14在单因子方差分析中,设因子A有r个水平,每个水平测得一个容量为的样本,则下列说法正确的是_ (A)方差分析的目的是检验方差是否相等(B)方差分析中的假设检验是双边检验(C) 方差分析中包含了随机误差外,还包含效应间的差异(D) 方差分析中包含了随机误差外,还包含效应间的差异15在一次假设检验中,下列说法正确的是_ _(A)第

    9、一类错误和第二类错误同时都要犯(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误(C)增大样本容量,则犯两类错误的概率都要变小(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误16设是未知参数的一个估计量,若,则是的_ _(A)极大似然估计(B)矩法估计(C)相合估计(D)有偏估计17设某个假设检验问题的拒绝域为W,且当原假设H0成立时,样本值(x1,x2, ,xn)落入W的概率为0.15,则犯第一类错误的概率为_。(A) 0.1(B) 0.15(C) 0.2(D) 0.2518.在对单个正态总体均值的假设检验中,当总体方差已知时,选用(A)检验法 (

    10、B)检验法 (C)检验法 (D)检验法19.在一个确定的假设检验中,与判断结果相关的因素有(A)样本值与样本容量 (B)显著性水平 (C)检验统计量 (D)A,B,C同时成立20.对正态总体的数学期望进行假设检验,如果在显著水平下接受,那么在显著水平0.01下,下列结论中正确的是(A)必须接受 (B)可能接受,也可能拒绝(C)必拒绝 (D)不接受,也不拒绝21.设是取自总体的一个简单样本,则的矩估计是(A)(B)(C) (D)22.总体,已知,时,才能使总体均值的置信水平为的置信区间长不大于(A)/ (B)/ (C)/ (D)23.设为总体的一个随机样本,为 的无偏估计,C (A)/ (B)/

    11、 (C) 1/ (D) /24.设总体服从正态分布是来自的样本,则的最大似然估计为(A) (B) (C) (D)25.设是来自的样本,那么下列选项中不正确的是(A)当充分大时,近似有(B)(C)(D)26.若那么(A) (B) (C) (D)27.设为来自正态总体简单随机样本,是样本均值,记,则服从自由度为的分布的随机变量是(A) (B) (C) (D) 28.设X1,X2,Xn,Xn+1, ,Xn+m是来自正态总体的容量为n+m的样本,则统计量服从的分布是(A) (B) (C) (D) 29设,其中已知,未知,为其样本,下列各项不是统计量的是() ()()()30. 设,其中已知,未知,为其

    12、样本,下列各项不是统计量的是( )(A) ()() (D)三、计算题1.已知某随机变量服从参数为的指数分布,设是子样观察值,求的极大似然估计和矩估计。(10分)2.某车间生产滚珠,从某天生产的产品中抽取6个,测得直径为:14.6 15.1 14.9 14.8 15.2 15.1 已知原来直径服从,求:该天生产的滚珠直径的置信区间。给定(,)(8分)3.某包装机包装物品重量服从正态分布。现在随机抽取个包装袋,算得平均包装袋重为,样本均方差为,试检查今天包装机所包物品重量的方差是否有变化?()()(8分)4.设某随机变量的密度函数为 求的极大似然估计。(6分)5.某车间生产滚珠,从长期实践可以认为

    13、滚珠的直径服从正态分布,且直径的方差为,从某天生产的产品中随机抽取9个,测得直径平均值为15毫米,试对求出滚珠的平均直径的区间估计。(8分)6.某种动物的体重服从正态分布,今抽取个动物考察,测得平均体重为公斤,问:能否认为该动物的体重平均值为公斤。()(8分)()7.设总体的密度函数为:, 设是的样本,求的矩估计量和极大似然估计。(10分)8.某矿地矿石含少量元素服从正态分布,现在抽样进行调查,共抽取个子样算得,求的置信区间(,)(8分)9某大学从来自A,B两市的新生中分别随机抽取5名与6名新生,测其身高(单位:cm)后算得175.9,172.0;。假设两市新生身高分别服从正态分布X-N(1,

    14、2),Y-N(2,2)其中2未知。试求12的置信度为0.95的置信区间。(t0.025(9)=2.2622,t0.025(11)=2.2010)10(10分)某出租车公司欲了解:从金沙车站到火车北站乘租车的时间。随机地抽查了9辆出租车,记录其从金沙车站到火车北站的时间,算得(分钟),无偏方差的标准差。若假设此样本来自正态总体,其中均未知,试求的置信水平为0.95的置信下限。11(10分)设总体服从正态分布,且与都未知,设为来自总体的一个样本,其观测值为,设,。求和的极大似然估计量。12(8分)掷一骰子120次,得到数据如下表出现点数123456次数 20 20 20 20 40若我们使用检验,

    15、则取哪些整数值时,此骰子是均匀的的假设在显著性水平下被接受?13.(14分)机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准重量为kg,方差。某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重(单位:kg)为:0.994,1.014,1.02,0.95,1.03,0.968,0.976,1.048,0.982算得上述样本相关数据为:均值为,无偏标准差为,。问(1)在显著性水平下,这天生产的食盐的平均净重是否和规定的标准有显著差异?(2) 在显著性水平下,这天生产的食盐的净重的方差是否符合规定的标准?(3)你觉得该天包装机工作是否正常?14(8分)设总体有概率

    16、分布取值1 2 3概率现在观察到一个容量为3的样本,。求的极大似然估计值?15(12分)对某种产品进行一项腐蚀加工试验,得到腐蚀时间(秒)和腐蚀深度(毫米)的数据见下表: 5 5 10 20 30 40 50 60 65 90 120 4 6 8 13 16 17 19 25 25 29 46 假设与之间符合一元线回归模型(1)试建立线性回归方程。(2)在显著性水平下,检验16. (7分)设有三台机器制造同一种产品,今比较三台机器生产能力,记录其五天的日产量机器IIIIII日产量138144135149143163148152146157155144159141153现把上述数据汇总成方差分析

    17、表如下方差来源平方和自由度均方和比352.93312893.7331417.(10分)设总体在上服从均匀分布,为其一个样本,设(1)的概率密度函数(2)求18.(7分)机器包装食盐,假设每袋盐的净重服从正态分布,规定每袋标准重量为kg,方差。某天开工后,为检验其机器工作是否正常,从装好的食盐中随机抽取抽取9袋,测得净重(单位:kg)为:0.994,1.014,1.02,0.95,1.03,0.968,0.976,1.048,0.982算得上述样本相关数据为:均值为,无偏标准差为,在显著性水平下,这天生产的食盐的净重的方差是否符合规定的标准?19.(10分)设总体服从正态分布,是来自该总体的一个

    18、样本,记,求统计量的分布。20某大学从来自A,B两市的新生中分别随机抽取5名与6名新生,测其身高(单位:cm)后算得175.9,172.0;。假设两市新生身高分别服从正态分布X-N(1,2),Y-N(2,2)其中2未知。试求12的置信度为0.95的置信区间。(t0.025(9)=2.2622,t0.025(11)=2.2010)试题参考答案一、填空题1 (1) (2) (3) 或 2 0.7, 33/7 , 44/7! = 1/1260 , 50.75, 6 1/5, 7,1/2, 80.2, 92/3, 104/5, 11, 12F(b,c)-F(a,c), 13F (a,b), 141/2

    19、, 151.16, 167.4, 171/2, 1846, 198520; 21, 22,1/8 , 23=7,S2=2 , 24, 二、选择题1A2D 3B 4D 5D 6C 7B 8B 9C 10 C11C 12A 13C 14C 1 5B 16B 17C 18B 19A 20 C21C 22B 23A 24B 25C 三、解答题1. 8/15 ; 2.(1)1/15,(2)1/210, (3)2/21; 3.(1) 0.28, (2)0.83, (3) 0.72; 4. 0.92;5.取出产品是B厂生产的可能性大。 6. m/(m+k);7.(1)123410/13(3/13)(10/1

    20、2)(3/13)(2/12)(10/11)(3/13)(2/12)(1/11)(2)8. (1)A1/2 , (2), (3)9. , 10. 11. 提示:,利用后式求得(查表)12. A=1/2,B=; 1/2; f (x)=1/(1+x2)12313/83/83/431/81/81/41/83/83/81/8113.14. (1) ;(2) ;(3) 独立 ;15. (1) 12; (2) (1-e-3)(1-e-8) 16. (1)(2) 17. (1) ; (2)不独立18. ;19. 20. 丙组 21. 10分25秒 22. 平均需赛6场23. ;24. k = 2, E(XY)

    21、=1/4, D(XY)=7/14425. 0.9475 26. 0.9842 27. 537 28. 29. 1630. 提示:利用条件概率可证得。31. 提示:参数为2的指数函数的密度函数为 ,利用的反函数即可证得。试题参考答案一、填空题1, 2=1.71, 3, 40.5, 562 , 7, 8(n-1)s2或, 90.15 , 10,其中11 , 385; 12 13 ,; 14为,15; 16,17, 18(4.808,5.196), 19, 20(n-1)s2或 , 21, 22, ,23 ,24 , 25 , 26, 272 , 281/8 , 29=7, S2=2, 30二、选择

    22、题1D 2B 3B 4D 5D 6C 7D 8A 9D 10C11A 12B 13D 14D 15C 16D 17B 18B 19D 20A21D 22B 23C 24A 25B 26A 27B 28C 29C 30A三、计算题1(分)解:设是子样观察值 极大似然估计: 矩估计:样本的一阶原点矩为:所以有:2(分)解:这是方差已知,均值的区间估计,所以有:置信区间为:由题得:代入即得:所以为:3(分) 解:统计量为:,:,代入统计量得 所以不成立,即其方差有变化。4(6分)解:极大似然估计: 得 5(分) 解: 这是方差已知均值的区间估计,所以区间为:由题意得:代入计算可得 化间得:6(8分)

    23、解:,所以接受,即可以认为该动物的体重平均值为。7(10分)解: 矩估计为:样本的一阶原点矩为:所以有:极大似然估计:两边取对数:两边对求偏导数:=0所以有:8(8分)解:由得 ,所以的置信区间为:, 将,代入得 , 9解:这是两正态总体均值差的区间估计问题。由题设知, (2分) =3.1746, (4分)选取t0.025(9)=2.2622, 则置信度为0.95的置信区间为: (8分)-0.4484,8.2484. (10分)注:置信区间写为开区间者不扣分。10解:由于未知,故采用作枢轴量(2分)要求(2分)这等价于要求,也即(2分)而(2分)所以,故(1分)故的置信水平为的置信下限为由于这

    24、里,所以由样本算得(1分)即的置信水平为0.95的置信下限为2.155。11 解:写出似然函数(4分)取对数(2分)求偏导数,得似然方程(3分)解似然方程得:,(1分)12解:设第点出现的概率为,中至少有一个不等于 (1分)采用统计量 (1分)在本题中, (1分)所以拒绝域为(1分)算实际的值,由于,所以(1分)所以由题意得时被原假设被接受即,故取之间的整数时,(2分)此骰子是均匀的的假设在显著性水平下被接受。(1分)13.解:“这几天包装是否正常”,即需要对这天包装的每袋食盐净重的期望与方差分别作假设检验(1)(检验均值,总共6分),选统计量,并确定其分布确定否定域统计量的观测值为因为,所以

    25、接受。(2)(检验方差,总共6分),选统计量确定否定域统计量的观测值为因为,所以拒绝(3)(2分)结论:综合(1)与(2)可以认为,该天包装机工作是不正常的。14解:此时的似然函数为(2分)即(2分)(1分)(1分)令(1分)得的极大似然估计值.(1分)15解:(1)解:根据公式可得其中(2分)(1分)(1分)用上述公式求得(2分)即得线性回方程为(2),(1分)检验假设(1分)的检验统计量为(1分)的临界值(1分)由前面的计算可知(1分)所以在显著性水平下,拒绝原假设,认为。(1分)16解: (1)方差来源平方和自由度均方和比352.9332176.4673.916540.81245.067

    26、893.73314(每空1分,共5分)(2)又因为,所以样本落入拒绝域,即认为三台机器的生产能力有显著差异。(2分)17 解:(1)由公式可得的概率密度函数(5分)即(2分)(2) (3分)18 解:,(2分)选统计量(2分)确定否定域(1分)统计量的观测值为(1分)因为,所以拒绝(1分)19解:因为正态分布的线性组合还是正态分布所以服从正态分布(2分)所以下面只需要确定这个正态分布的期望与方差就可以了。由于(3分)由于与是相互独立的,且求得(2分)(2分)可知统计量服从正态分布(1分)20解:这是两正态总体均值差的区间估计问题。由题设知, (2分) =3.1746, (4分)选取t0.025(9)=2.2622, 则置信度为0.95的置信区间为: (8分)-0.4484,8.2484. (10分)注:置信区间写为开区间者不扣分。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:概率论与数理统计试题库及答案(DOC 31页).docx
    链接地址:https://www.163wenku.com/p-5630566.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库