高二数学离散型随机变量的均值与方差综合测试题(DOC 11页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高二数学离散型随机变量的均值与方差综合测试题(DOC 11页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高二数学离散型随机变量的均值与方差综合测试题DOC 11页 数学 离散 随机变量 均值 方差 综合测试 DOC 11 下载 _考试试卷_数学_高中
- 资源描述:
-
1、选修2-3 2.3.3 离散型随机变量的均值与方差习题课一、选择题1已知随机变量X的分布列是X123P0.40.20.4则E(X)和D(X)分别等于()A1和0 B1和1.8 C2和2 D2和0.8答案D解析E(X)10.420.230.42D(X)(21)20.4(22)20.2(23)20.40.8.2已知随机变量X的分布列为X012P且2X3,且E()等于()A. B. C. D.答案C解析E(X)012,E()E(2X3)2E(X)3.3某人从家乘车到单位,途中有3个交通岗假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯次数的均值为()A0.4 B1.2
2、 C0.43 D0.6答案B解析途中遇红灯的次数X服从二项分布,即XB(3,0.4),E(X)30.41.2.4已知X的分布列为X1234P则D(X)的值为()A. B. C. D.答案C解析E(X)1234,E(X2)12223242,D(X)E(X2)(E(X)2.5已知X的分布列为X101P若2X2,则D()的值为()A B. C. D.答案D解析E(X)101,D(X)222,D()D(2X2)4D(X).6从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是,设X为途中遇到红灯的次数,则随机变量X的方差为()A. B. C. D.答案B解析
3、由XB,D(X)3.7已知X服从二项分布B(n,p),且E(3X2)9.2,D(3X2)12.96,则二项分布的参数n、p的值为()An4,p0.6 Bn6,p0.4Cn8,p0.3 Dn24,p0.1答案B解析由E(3X2)3E(X)2,D(3X2)9D(X),及X B(n,p)时E(X)np.D(X)np(1p)可知8甲、乙、丙三名射箭运动员在某次测试中各射箭20次,三人的测试成绩如下表甲的成绩环数78910频数5555乙的成绩环数78910频数6446丙的成绩环数78910频数4664s1、s2、s3分别表示甲、乙、丙三名运动员这次测试成绩的标准差,则有()As3s1s2 Bs2s1s3
4、Cs1s2s3 Ds2s3s1答案B解析计算可得甲、乙、丙的平均成绩为8.5.s1.同理,s2,s3,s2s1s3,故选B.二、填空题9牧场的10头牛,因误食疯牛病毒污染的饲料被感染,已知该病的发病率为0.02,设发病牛的头数为X,则D(X)等于_答案0.196解析由题意知,随机变量服从二项分布,所以D(X)npq100.02(10.02)0.196.10(2010福州)设有m升水,其中含有n个大肠杆菌,今任取1升水检验,设其中含大肠杆菌的个数为X,则E(X)_.答案解析设A“在所取的1升水中含有一个大肠杆菌”,则P(A),P(Xk)Pn(k)C()k(1)nk(k0,1,2,3,n),XB(
5、n,)则E(X)n.11某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或选错得0分小王选对每题的概率为0.8,则其第一大题得分的均值为_答案48解析设小王选对个数为X,得分为5X,则XB(12,0.8),E(X)np120.89.6,E()E(5X)5E(X)59.648.12若X的分布列如下表:X1234P则D_.答案解析E(X)(1234),D(X),DD(X).三、解答题13一名工人要看管三台机床,在一小时内机床不需要工人照顾的概率对于第一台是0.9,第二台是0.8,第三台是0.85,求在一小时的过程中不需要工人照顾的机床的台数X的数学期望(均值)解析由题意,可知X的所有可
展开阅读全文