高考文科数学试题分类汇编导数(DOC 25页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《高考文科数学试题分类汇编导数(DOC 25页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考文科数学试题分类汇编导数DOC 25页 高考 文科 数学试题 分类 汇编 导数 DOC 25 下载 _其它资料_高考专区_数学_高中
- 资源描述:
-
1、2012高考文科试题解析分类汇编:导数1.【2012高考重庆文8】设函数在上可导,其导函数,且函数在处取得极小值,则函数的图象可能是 【答案】C【解析】:由函数在处取得极小值可知,则;,则时,时【考点定位】本题考查函数的图象,函数单调性与导数的关系,属于基础题 2.【2012高考浙江文10】设a0,b0,e是自然对数的底数A. 若ea+2a=eb+3b,则abB. 若ea+2a=eb+3b,则abC. 若ea-2a=eb-3b,则abD. 若ea-2a=eb-3b,则ab【答案】A【命题意图】本题主要考查了函数复合单调性的综合应用,通过构造法技巧性方法确定函数的单调性.【解析】若,必有构造函数
2、:,则恒成立,故有函数在x0上单调递增,即ab成立其余选项用同样方法排除3.【2012高考陕西文9】设函数f(x)=+lnx 则 ( )Ax=为f(x)的极大值点 Bx=为f(x)的极小值点Cx=2为 f(x)的极大值点 Dx=2为 f(x)的极小值点【答案】D.【解析】,令,则 当时,; 当时, 即当时,是单调递减的;当时,是单调递增的 所以是的极小值点故选D4.【2012高考辽宁文8】函数y=x2x的单调递减区间为(A)(1,1 (B)(0,1 (C.)1,+) (D)(0,+)【答案】B【命题意图】本题主要考查利导数公式以及用导数求函数的单调区间,属于中档题。【解析】故选B5.【2102
3、高考福建文12】已知f(x)=x-6x+9x-abc,abc,且f(a)=f(b)=f(c)=0.现给出如下结论: f(0)f(1)0;f(0)f(1)0;f(0)f(3)0;f(0)f(3)0.其中正确结论的序号是 A. B. C. D.【答案】C考点:导数。难度:难。分析:本题考查的知识点为导数的计算,零点问题,要先分析出函数的性质,结合图形来做。解答:, 导数和函数图像如下:由图,且,所以。6.【2012高考辽宁文12】已知P,Q为抛物线x2=2y上两点,点P,Q的横坐标分别为4,2,过P,Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为(A) 1 (B) 3 (C) 4 (D)
4、8【答案】C【命题意图】本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题。【解析】因为点P,Q的横坐标分别为4,2,代人抛物线方程得P,Q的纵坐标分别为8,2.由所以过点P,Q的抛物线的切线的斜率分别为4,2,所以过点P,Q的抛物线的切线方程分别为联立方程组解得故点A的纵坐标为4【点评】曲线在切点处的导数即为切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键。 7.【2012高考新课标文13】曲线y=x(3lnx+1)在点处的切线方程为_【答案】 【命题意图】本题主要考查导数的几何意义与直线方程,是简单题.【解析】,切线斜率为4,则切线方
5、程为:.8.【2012高考上海文13】已知函数的图像是折线段,其中、,函数()的图像与轴围成的图形的面积为 【答案】。【解析】根据题意,得到,从而得到所以围成的面积为,所以围成的图形的面积为 .【点评】本题主要考查函数的图象与性质,函数的解析式的求解方法、定积分在求解平面图形中的运用.突出体现数形结合思想,本题综合性较强,需要较强的分析问题和解决问题的能力,在以后的练习中加强这方面的训练,本题属于中高档试题,难度较大.9【2102高考北京文18】(本小题共13分)已知函数f(x)=ax2+1(a0),g(x)=x3+bx。若曲线y=f(x)与曲线y=g(x)在它们的交点(1,c)处具有公共切线
6、,求a,b的值;当a=3,b=-9时,若函数f(x)+g(x)在区间k,2上的最大值为28,求k的取值范围。【考点定位】此题应该说是导数题目中较为常规的类型题目,考醒的切线、单调性、极值以及最值问题都是果本中要求的重点内容。也是学生掌握比较好的知识点,在题目占能够发现和分析出区间包含极大值点,比较重要。解:(1),.因为曲线与曲线在它们的交点处具有公共切线,所以,即且解得(2)记当时,令,解得:,;与在上的情况如下:1(1,2)2+00+28-43由此可知:当时,函数在区间上的最大值为;当时,函数在区间上的最大值小于28.因此,的取值范围是10.【2012高考江苏18】(16分)若函数在处取得
7、极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点;(3)设,其中,求函数的零点个数【答案】解:(1)由,得。 1和是函数的两个极值点, ,解得。 (2) 由(1)得, , ,解得。 当时,;当时, 是的极值点。 当或时, 不是的极值点。 的极值点是2。(3)令,则。 先讨论关于 的方程 根的情况:当时,由(2 )可知,的两个不同的根为I 和一2 ,注意到是奇函数,的两个不同的根为一和2。当时, ,一2 , 1,1 ,2 都不是的根。由(1)知。 当时, ,于是是单调增函数,从而。此时在无实根。 当时,于是是单调增函数。又,的
8、图象不间断, 在(1 , 2 )内有唯一实根。同理,在(一2 ,一I )内有唯一实根。 当时,于是是单调减两数。又, ,的图象不间断,在(一1,1 )内有唯一实根。因此,当时,有两个不同的根满足;当 时有三个不同的根,满足。现考虑函数的零点:( i )当时,有两个根,满足。而有三个不同的根,有两个不同的根,故有5 个零点。( 11 )当时,有三个不同的根,满足。而有三个不同的根,故有9 个零点。综上所述,当时,函数有5 个零点;当时,函数有9 个零点。【考点】函数的概念和性质,导数的应用。【解析】(1)求出的导数,根据1和是函数的两个极值点代入列方程组求解即可。 (2)由(1)得,求出,令,求
9、解讨论即可。 (3)比较复杂,先分和讨论关于 的方程 根的情况;再考虑函数的零点。11.【2012高考天津文科20】(本小题满分14分)已知函数,x其中a0.(I)求函数的单调区间;(II)若函数在区间(-2,0)内恰有两个零点,求a的取值范围;(III)当a=1时,设函数在区间上的最大值为M(t),最小值为m(t),记g(t)=M(t)-m(t),求函数g(t)在区间上的最小值。【解析】() 或, 得:函数的单调递增区间为,单调递减区间为() 函数在内单调递增,在内单调递减 原命题(lfxlby)(III)当时,在上单调递增,在上单调递减当 当 得:函数在区间上的最小值为12.【2012高考
10、广东文21】(本小题满分14分)设,集合,.(1)求集合(用区间表示)(2)求函数在内的极值点.【解析】(1)令,。 当时,方程的两个根分别为,所以的解集为。因为,所以。 当时,则恒成立,所以,综上所述,当时,;当时,。(2), 令,得或。 当时,由(1)知,因为,所以,所以随的变化情况如下表:0极大值所以的极大值点为,没有极小值点。 当时,由(1)知,所以随的变化情况如下表:00极大值极小值所以的极大值点为,极小值点为。综上所述,当时,有一个极大值点,没有极小值点;当时,有一个极大值点,一个极小值点。13.【2102高考福建文22】(本小题满分14分)已知函数且在上的最大值为,(1)求函数f
展开阅读全文