书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型高中数学必修三第三章《概率》单元测试题(DOC 17页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5628651
  • 上传时间:2023-04-27
  • 格式:DOC
  • 页数:18
  • 大小:1.22MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《高中数学必修三第三章《概率》单元测试题(DOC 17页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    概率 高中数学必修三第三章概率单元测试题DOC 17页 高中数学 必修 第三 单元测试 DOC 17 下载 _考试试卷_数学_高中
    资源描述:

    1、高中数学必修三第三章概率单元测试题 (120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为()在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;从标有1,2,3,4的4张号签中任取一张,恰为1号签;在标准大气压下,水在4时结冰.A.1B.2C.3D.42.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为()A.B.C.D.【延伸探究】若本题

    2、条件不变,则“出现的点数大于2”的概率为.3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是()A.B.C.D.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()A.P1=P2P3B.P1P2P3C.P1P2=P3D.P3=P20成立的事件发生的概率等于.16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的

    3、,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.18.(12分)某地区的年降水量在下列范围内的概率如表所示:年降水量(单位:mm)100150150200200250250300概率0.120.250.160.14(1)求年降水量在100200(mm)范围内的概率.(2)求年降水量在150300(mm)范围内的概率.19.(12分)已知集合M=(x,y)|x0

    4、,2,y-1,1(1)若x,yZ,求x+y0的概率.(2)若x,yR,求x+y0的概率.20.(12分)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)参加书法社团未参加书法社团参加演讲社团85未参加演讲社团230(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.21.(12分)甲、乙两人相约于下午1:002:00之间到某车站乘公共汽车外出,他们到达车站

    5、的时间是随机的.设在下午1:002:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.记事件A表示“a+b=2”,求事件A的概率;在区间0,2内任取2个实数x,y,求事件“x2+y2(a-b)2恒

    6、成立”的概率.高中数学必修三第三章概率单元测试题参考答案 (120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为()在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;从标有1,2,3,4的4张号签中任取一张,恰为1号签;在标准大气压下,水在4时结冰.A.1B.2C.3D.4【解析】选C.在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;在体育课上,体育老师随机抽取一名

    7、学生去拿体育器材,李凯不一定被抽到,是随机事件;从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;在标准大气压下,水在4时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为()A.B.C.D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(AB)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为.【解析】A,B为互斥事件,故采用概率的加法公式得P(AB)=,所以出现的点数大于2的概率为1-P(AB)=.答案:3.甲、乙、丙3名学

    8、生排成一排,其中甲、乙两人站在一起的概率是()A.B.C.D.【解析】选D.基本事件总数=甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P=.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件事件5红3白一30二21三12四03对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两

    9、个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()A.P1=P2P3B.P1P2P3C.P1P2=P3D.P3=P2P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(

    10、3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1P2P(C)=P(D)P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.【解题指南】根据条件可用列举法列出所有

    11、基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间1,6上随机取一个实数x,使得2x2,4的概率为()A.B.C.D.【解析】选B.由于区间1,6的长度是6-1=5,由2x2,4,则x1,2,长度为2-1=1,故在区间1,6上随机取一实数,则该实数使得2x2,4的概率P

    12、=.9.(2015东营高一检测)在区间-,内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+2有零点的概率为()A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须=(2a)2-4(-b2+2)0,即a2+b22.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】

    13、选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A=(x,y)|x2+y216和集合B=(x,y)|x+y-40,x0,y0表示的平面区域分别

    14、为1,2.若在区域1内任取一点M(x,y),则点M落在区域2的概率为()A.B.C.D.【解析】选A.区域1为圆心在原点,半径为4的圆,区域2为等腰直角三角形,两腰长为4,所以P=.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:所用时间(分钟)0,20)20,40)40,60)60,80)80,100)人数25501555公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为()A.0.5B.0.7C

    15、.0.8D.0.9【解析】选D.当0t0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),(9,7),(9,8),(9,9),共81个.由不等式a-2b+100得2b(a-b)2恒成立”的概率.【解析】(1)由题意可知:=,解得n=2.(2)不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)=.记“x2+y2(a-b)2恒成立”为事件B,则事件B等价于“x2+y24”,(x,y)可以看成平面中的点,则全部结果所构成的区域=(x,y)|0x2,0y2,x,yR,而事件B所构成的区域B=(x,y)|x2+y24,(x,y),所以P(B)=1-.- 18 -

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:高中数学必修三第三章《概率》单元测试题(DOC 17页).doc
    链接地址:https://www.163wenku.com/p-5628651.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库