浙教版九年级上册压轴题数学数学模拟试题(DOC 59页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《浙教版九年级上册压轴题数学数学模拟试题(DOC 59页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙教版九年级上册压轴题数学数学模拟试题DOC 59页 浙教版 九年级 上册 压轴 数学 数学模拟 试题 DOC 59 下载 _考试试卷_数学_初中
- 资源描述:
-
1、浙教版九年级上册压轴题数学数学模拟试题一、压轴题1如图,已知点A、C在双曲线上,点 B、D在双曲线上,AD/ BC/y 轴.(I)当m=6,n=-3,AD=3 时,求此时点 A 的坐标;(II)若点A、C关于原点O对称,试判断四边形 ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn 的最小值.2定义:对于二次函数,我们称函数为它的分函数(其中为常数)例如:的分函数为设二次函数的分函数的图象为(1)直接写出图象对应的函数关系式(2)当时,求图象在范围内的最高点和最低点的坐标(3)当图象在的部分与轴只有一个交点时,求的取值范围(4)当,图象到轴的距离为个单位
2、的点有三个时,直接写出的取值范围3已知:如图,抛物线交正半轴交于点,交轴于点,点在抛物线上,直线:过点,点是直线上的一个动点,的外心是(1)求,的值(2)当点移动到点时,求的面积(3)是否存在点,使得点落在的边上,若存在,求出点的坐标,若不存在,请说明理由过点作直线轴交直线于点,当点从点移动到点时,圆心移动的路线长为_(直接写出答案)4如图1,在平面直角坐标系中,抛物线与轴交于,两点,点坐标为,与轴交于点,直线与抛物线交于,两点(1)求抛物线的函数表达式;(2)求的值和点坐标;(3)点是直线上方抛物线上的动点,过点作轴的垂线,垂足为,交直线于点,过点作轴的平行线,交于点,当是线段的三等分点时,
3、求点坐标;(4)如图2,是轴上一点,其坐标为,动点从出发,沿轴正方向以每秒5个单位的速度运动,设的运动时间为(),连接,过作于点,以所在直线为对称轴,线段经轴对称变换后的图形为,点在运动过程中,线段的位置也随之变化,请直接写出运动过程中线段与抛物线有公共点时的取值范围5如图1,抛物线与轴交于、两点,与轴交于点,作直线点是线段上的一个动点(不与,重合),过点作轴于点设点的横坐标为(1)求抛物线的表达式及点的坐标;(2)线段的长用含的式子表示为 ;(3)以为边作矩形,使点在轴负半轴上、点在第三象限的抛物线上如图2,当矩形成为正方形时,求的值;如图3,当点恰好是线段的中点时,连接,试探究坐标平面内是
4、否存在一点,使以,为顶点的三角形与全等?若存在,直接写出点的坐标;若不存在,说明理由6如图1,在平面直角坐标系中,抛物线与x轴交于点 A(-1,0) ,B(点A在点B的左侧),交y轴与点(0,-3),抛物线的对称轴为直线x1,点D为抛物线的顶点 (1)求该抛物线的解析式; (2)已知经过点A的直线ykx+b(k0)与抛物线在第一象限交于点E,连接AD,DE,BE,当时,求点E的坐标(3)如图2,在(2)中直线AE与y轴交于点F,将点F向下平移个单位长度得到Q,连接QB将OQB绕点O逆时针旋转一定的角度(0360)得到,直线与x轴交于点G问在旋转过程中是否存在某个位置使得是等腰三角形?若存在,请
5、直接写出所有满足条件的点的坐标;若不存在,请说明理由7如图1,抛物线的顶点在轴上,交轴于,将该抛物线向上平移,平移后的抛物线与轴交于,顶点为(1)求点的坐标和平移后抛物线的解析式;(2)点在原抛物线上,平移后的对应点为,若,求点的坐标;(3)如图2,直线与平移后的抛物线交于在抛物线的对称轴上是否存在点,使得以为顶点的三角形是直角三角形?若存在,直接写出点的坐标;若不存在,请说明理由8如图,O经过菱形ABCD的三个顶点A、C、D,且与AB相切于点A(1)求证:BC为O的切线;(2)求B的度数(3)若O半径是4,点E是弧AC上的一个动点,过点E作EMOA于点M,作ENOC于点N,连接MN,问:在点
6、E从点A运动到点C的过程中,MN的大小是否发生变化?如果不变化,请求出MN的值;如果变化,请说明理由9将抛物线向下平移6个单位长度得到抛物线,再将抛物线向左平移2个单位长度得到抛物线 (1)直接写出抛物线,的解析式;(2)如图(1),点在抛物线对称轴右侧上,点在对称轴上,是以为斜边的等腰直角三角形,求点的坐标;(3)如图(2),直线(,为常数)与抛物线交于,两点,为线段的中点;直线与抛物线交于,两点,为线段的中点求证:直线经过一个定点10如图,正方形ABCD中,对角线AC、BD交于点O,E为OC上动点(与点O不重合),作AFBE,垂足为G,交BO于H连接OG、CG(1)求证:AH=BE;(2)
7、试探究:AGO 的度数是否为定值?请说明理由;(3)若OGCG,BG=,求OGC的面积11在平面直角坐标系中,经过点且与平行的直线,交轴于点,如图1所示(1)试求点坐标,并直接写出的度数;(2)过的直线与成夹角,试求该直线与交点的横坐标;(3)如图2,现有点在线段上运动,点在轴上,为线段的中点试求点的纵坐标关于横坐标的函数关系式;直接写出点的运动轨迹长度为 12如图,抛物线经过点A(1,0),B(4,0)与轴交于点C(1)求抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由(3)如图,点Q是线段
8、OB上一动点,连接BC,在线段BC上是否存在这样的点M,使CQM为等腰三角形且BQM为直角三角形?若存在,求M的坐标;若不存在,请说明理由13如图所示,在中,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当_时,为直角三角形.14如图,已知矩形ABCD中,AB=8,AD=6, 点E是边CD上一个动点,连接AE,将AED沿直线AE翻折得AEF.(1) 当点C落在
9、射线AF上时,求DE的长;(2)以F为圆心,FB长为半径作圆F,当AD与圆F相切时,求cosFAB的值;(3)若P为AB边上一点,当边CD上有且仅有一点Q满BQP=45,直接写出线段BP长的取值范围.15如图,在平面直角坐标系xOy中,直线yx+2与x轴交于点A,与y轴交于点C抛物线yax2+bx+c的对称轴是x且经过A、C两点,与x轴的另一交点为点B(1)求抛物线解析式(2)若点P为直线AC上方的抛物线上的一点,连接PA,PC求PAC的面积的最大值,并求出此时点P的坐标(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标
10、;若不存在,请说明理由16如图1,已知中,它在平面直角坐标系中位置如图所示,点在轴的负半轴上(点在点的右侧),顶点在第二象限,将沿所在的直线翻折,点落在点位置(1)若点坐标为时,求点的坐标;(2)若点和点在同一个反比例函数的图象上,求点坐标;(3)如图2,将四边形向左平移,平移后的四边形记作四边形,过点的反比例函数的图象与的延长线交于点,则在平移过程中,是否存在这样的,使得以点为顶点的三角形是直角三角形且点在同一条直线上?若存在,求出的值;若不存在,请说明理由17已知,在平面直角坐标系中,二次函数的图象与轴交于点,与轴交于点,点的坐标为,点的坐标为(1)如图1,分别求的值;(2)如图2,点为第
11、一象限的抛物线上一点,连接并延长交抛物线于点,求点的坐标;(3)在(2)的条件下,点为第一象限的抛物线上一点,过点作轴于点,连接、,点为第二象限的抛物线上一点,且点与点关于抛物线的对称轴对称,连接,设,点为线段上一点,点为第三象限的抛物线上一点,分别连接,满足,过点作的平行线,交轴于点,求直线的解析式18如图,已知抛物线y=x2+bx+c经过A(3,0),B(0,3)两点(1)求此抛物线的解析式和直线AB的解析式;(2)如图,动点E从O点出发,沿着OA方 向 以1个单位/秒的速度向终点A匀速运动,同时, 动点F从A点出发,沿着AB方向以个单位/ 秒的速度向终点B匀速运动,当E,F中任意一点到达
12、终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,AEF为直角三角形?(3)如图,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由19如图,在平面直角坐标系中,四边形ABCD的顶点A、B在函数的图象上,顶点C、D在函数的图象上,其中,对角线轴,且于点P已知点B的横坐标为4(1)当,时,点B的坐标为_,点D的坐标为_,BD的长为_若点P的纵坐标为2,求四边形ABCD的面积若点P
13、是BD的中点,请说明四边形ABCD是菱形(2)当四边形ABCD为正方形时,直接写出m、n之间的数量关系20对于C与C上的一点A,若平面内的点P满足:射线AP与C交于点Q(点Q可以与点P重合),且,则点P称为点A关于C的“生长点”已知点O为坐标原点,O的半径为1,点A(-1,0)(1)若点P是点A关于O的“生长点”,且点P在x轴上,请写出一个符合条件的点P的坐标_;(2)若点B是点A关于O的“生长点”,且满足,求点B的纵坐标t的取值范围;(3)直线与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于O的“生长点”,直接写出b的取值范围是_【参考答案】*试卷处理标记,请不要删除一、压轴题1(I
14、) 点的坐标为;(II) 四边形是平行四边形,理由见解析;(III) 的最小值是.【解析】【分析】(I)由,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III) 设与的距离为,由,梯形的面积为,可求出h=7,根据,可得,进而得出答案.【详解】(I) ,设点的坐标为,则点的坐标为,由得:,解得:,此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,点、关于原点对称,点的坐标为, 轴,且点、在双曲线上,点 ,点 ,点B与点D关于原点
15、O对称,即,且、三点共线.又点、C关于原点O对称,即,且、三点共线.与互相平分.四边形是平行四边形. (III)设与的距离为,梯形的面积为,即,解得:,设点的坐标为,则点,由,可得:,则,解得:, , . .,即 . 又,当 取到等号 . 即,时, 的最小值是.【点睛】本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.2(1)(2)图象在范围内的最高点和最低点的坐标分别为,(3)当或或时,图象在的部分与轴只有一个交点(4),【解析】【分析】(1)根据分函数的定义直角写成关系式即可;(2)将m=1代入(1)所得的分函数可得,然后分和两种情况分别求出最高点和最低
16、点的坐标,最后比较最大值和最小值即可解答;(3)由于图象在的部分与轴只有一个交点时,则可令对应二元一次方程的根的判别式等于0,即可确定m的取值;同时发现无论取何实数、该函数的图象与轴总有交点,再令x=m代入原函数解析式,求出m的值,据此求出m的取值范围;(4)先令或-m,利用根的判别式小于零确定求出m的取值范围,然后再令x=m代入或-m,然后再令判别式小于零求出m的取值范围,令x=m代入或-m,令判别式小于零求出m的范围,然后取两两的共同部分即为m的取值范围【详解】(1)图象对应的函数关系式为(2)当时,图象对应的函数关系式为当时,将配方,得所以函数值随自变量的增大而增大,此时函数有最小值,无
17、最大值所以当时,函数值取得最小值,最小值为所以最低点的坐标为当时,将配方,得所以当时,函数值取得最小值,最小值为所以当时,函数值取得最大值,最大值为所以最低点的坐标为,最高点的坐标为所以,图象在范围内的最高点和最低点的坐标分别为,(3)当时,令,则所以无论取何实数,该函数的图象与轴总有交点所以当时,图象在的部分与轴只有一个交点当时,令,则解得,所以当或时,图象在的部分与轴只有一个交点综上所述,当或或时,图象在的部分与轴只有一个交点(4)当即,=0,方,m不存在;当即,=0,解得m1;将x=m代入得-3m2+3m-10,因=则m不存在; 将x=-m代入得-3m2+5m-10, 解得或;将x=m代
18、入得 ,解得或将x=m代入得 ,因=故m不存在;在两两同时满足的为,即为图象到轴的距离为个单位的点有三个时的m的取值范围【点睛】本题属于二次函数综合题,考查了新定义函数的定义、二次函数最值和二次函数图像,正确运用二次函数图像的性质和分类讨论思想是解答本题的关键3(1);(2);(3)点E的坐标为:或或; 圆心P移动的路线长=【解析】【分析】(1)令求出点A(6,0),把点C(-4,n)代入在抛物线方程,解得:n=5,把点B(0,-3)代入,从而可得答案; (2)记与轴的交点为,利用即可求解; (3)分当点P落在CA上时,点P落在AE上时,点P落在CE上时三种情况讨论即可; 分E在D和B点两种情
19、况,求出圆心点的坐标,则圆心P移动的路线长=,即可求解【详解】解:(1)令 点A(6,0), 把点C(-4,n)代入在抛物线方程,解得: ,把点B(0,-3)代入,解得:, 则:直线l:, (2)由(1)知:A(6,0)、B(0,-3)、C(-4,5)、AC中点为 设为: 解得: 所在的直线方程为:, 如图,AC与y轴交点H坐标为:(0,3), (3)如下图: 当点P落在CA上时, 圆心P为AC的中点其所在的直线与AC垂直, 的垂直平分线即圆心P所在的直线方程为: 把代入得: , 解得: E的坐标为; 当点P落在AE上时, 设点则点P的坐标, 则PA=PC, 解得: 故点 当点P落在CE上时,
20、 则PC=PA, 同理可得:故点 综上,点E的坐标为:或或; 当E在D点时,作AD的垂直平分线交的垂直平分线于点, 则,的纵坐标为 代入式,解得: 同理当当E在B点时, 作AB的垂直平分线交的垂直平分线于点, 的中点为:,设为:, 解得: AB直线方程为:,设的垂直平分线方程为: , 的垂直平分线方程为: 解得: 则圆心P移动的路线长= 故答案为:【点评】本题是二次函数的综合题,考查了二次函数与轴的交点坐标,利用待定系数法求解一次函数的解析式,三角形的外心的性质、一次函数的交点问题,勾股定理的应用,综合性很强,是难度较大类题目4(1);(2)m=2,D(1,);(3)P(, )或P(1,);(
21、4)0t【解析】【分析】(1)根据A,C两点坐标,代入抛物线解析式,利用待定系数法即可求解(2)通过(1)中的二次函数解析式求出B点坐标,代入一次函数,即可求出m的值,联立二次函数与一次函数可求出D点坐标(3)设出P点坐标,通过P点坐标表示出N,F坐标,再分类讨论PN=2NF,NF=2PN,即可求出P点(4)由A,D两点坐标求出AD的函数关系式,因为以所在直线为对称轴,线段经轴对称变换后的图形为,所以AD,即可求出的函数关系式,设直线与抛物线交于第一象限P点,所以当与P重合时,t有最大值,利用中点坐标公式求出PQ中点H点坐标,进而求出MH的函数关系式,令y=0求出函数与x轴交点坐标,从而可求出
展开阅读全文