书签 分享 收藏 举报 版权申诉 / 11
上传文档赚钱

类型第一章计数原理单元测试题(DOC 10页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5624978
  • 上传时间:2023-04-27
  • 格式:DOC
  • 页数:11
  • 大小:254KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《第一章计数原理单元测试题(DOC 10页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    第一章计数原理单元测试题DOC 10页 第一章 计数 原理 单元测试 DOC 10
    资源描述:

    1、第一章 计数原理单元测试题一、选择题(本大题共12小题,每小题5分,共60分)15位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有( )A10种B20种 C25种 D32种2甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有A36种 B48种 C96种 D192种3. 记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有()1440种960种 720种480种4. 某城市的汽车牌照号码由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有()个个个个5. 从5位同

    2、学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(A)40种(B)60种(C) 100种(D) 120种6. 由数字0,1,2,3,4,5可以组成无重复数字且奇偶数字相间的六位数的个数有( )A.72 B.60 C.48 D.527.用0,1,2,3,4组成没有重复数字的全部五位数中,若按从小到大的顺序排列,则数字12340应是第( )个数. A.6 B.9 C.10 D.8 8.AB和CD为平面内两条相交直线,AB上有m个点,CD上有n个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的

    3、个数是( )A. B. C. D. 9.设,则的值为( ) A.0 B.-1 C.1 D. 10. 2006年世界杯参赛球队共32支,现分成8个小组进行单循环赛,决出16强(各组的前2名小组出线),这16个队按照确定的程序进行淘汰赛,决出8强,再决出4强,直到决出冠、亚军和第三名、第四名,则比赛进行的总场数为( ) A.64 B.72 C.60 D.5611.用二项式定理计算9.985,精确到1的近似值为( ) A.99000 B.99002 C.99004 D.99005 12. 从不同号码的五双靴中任取4只,其中恰好有一双的取法种数为 ( )A.120 B.240 C.360 D.72二、

    4、 填空题(本大题共4小题,每小题4分,共16分)13. 今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答).14. 用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答)15. 若(2x3+)n的展开式中含有常数项,则最小的正整数n= .16. 从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有_种。(用数字作答)三、解答题(本大题共6小题,共74分。解答应写出文字说明、证明过程或演算步骤。)17如图,电路中共有7个电阻与一个电灯A,若灯A

    5、不亮,分析因电阻断路的可能性共有多少种情况。 18从1到9的九个数字中取三个偶数四个奇数,试问:能组成多少个没有重复数字的七位数?上述七位数中三个偶数排在一起的有几个?在中的七位数中,偶数排在一起、奇数也排在一起的有几个?在中任意两偶然都不相邻的七位数有几个?19把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.(1) 43251是这个数列的第几项?(2) 这个数列的第96项是多少?(3) 求这个数列的各项和.20.(本小题满分12分)求证:能被25整除。21. (本小题满分14分)已知的展开式的各项系数之和等于展开式中的常数项,求展开式中含的项的二

    6、项式系数.22. (本小题满分14分)若某一等差数列的首项为,公差为展开式中的常数项,其中m是除以19的余数,则此数列前多少项的和最大?并求出这个最大值.单元测试卷参考答案排列、组合、二项式定理一、选择题:(每题5分,共60分)1、D解析:5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有25=32种,选D2、C解析甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有种,选C3、解析:5名志愿者先排成一排,有种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有=960种不同的排法,选B4、A解析:某城市的汽车牌照号码

    7、由2个英文字母后接4个数字组成,其中4个数字互不相同的牌照号码共有个,选A5、B解析:从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有种,选B 6、B 解析:只考虑奇偶相间,则有种不同的排法,其中0在首位的有种不符合题意,所以共有种.7、C解析: 比12340小的分三类:第一类是千位比2小为0,有个; 第二类是千位为2 ,百位比3小为0,有个; 第三类是十位比4小为0,有1个.共有6+2+1=9个,所以12340是第10个数.8、D解析:在一条线上取2个点时,另一个点一定在另一条直线上,且不能是交点.

    8、9、C 解析: 由可得:当时, 当时, .10、A 解析:先进行单循环赛,有场,在进行第一轮淘汰赛,16个队打8场,在决出4强,打4场,再分别举行2场决出胜负,两胜者打1场决出冠、亚军,两负者打1场决出三、四名,共举行:48+8+4+2+1+1=64场.11、C解析:.12、A 解析:先取出一双有种取法,再从剩下的4双鞋中取出2双,而后从每双中各取一只,有种不同的取法,共有种不同的取法.二、 填空题(每小题4分,共16分)13、1260解析:由题意可知,因同色球不加以区分,实际上是一个组合问题,共有14、24解析:可以分情况讨论: 若末位数字为0,则1,2,为一组,且可以交换位置,3,4,各为

    9、1个数字,共可以组成个五位数; 若末位数字为2,则1与它相邻,其余3个数字排列,且0不是首位数字,则有个五位数; 若末位数字为4,则1,2,为一组,且可以交换位置,3,0,各为1个数字,且0不是首位数字,则有=8个五位数,所以全部合理的五位数共有24个15、7解析:若(2x3+)n的展开式中含有常数项,为常数项,即=0,当n=7,r=6时成立,最小的正整数n等于7.16、36种解析从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余3人中选出1人担任文娱委员,再从4人中选2人担任学习委员和体育委员,不同的选法共有种三、解答题(共六个小题

    10、,满分74分)17.解:每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线a、b、c,支线a,b中至少有一个电阻断路情况都有221=3种;4分支线c中至少有一个电阻断路的情况有221=7种,6分每条支线至少有一个电阻断路,灯A就不亮,因此灯A不亮的情况共有337=63种情况.10分18. 解:分步完成:第一步在4个偶数中取3个,可有种情况;第二步在5个奇数中取4个,可有种情况;第三步3个偶数,4个奇数进行排列,可有种情况,所以符合题意的七位数有个3分 上述七位数中,三个偶数排在一起的有个6分上述七位数中,3个偶数排在一起,4个奇数也排在一起的有个9分上述七位数中,偶数都不相

    11、邻,可先把4个奇数排好,再将3个偶数分别插入5个空档,共有个.12分19.解:先考虑大于43251的数,分为以下三类 第一类:以5打头的有: =24 第二类:以45打头的有: =6 第三类:以435打头的有: =22分故不大于43251的五位数有:(个)即43251是第88项.4分数列共有A=120项,96项以后还有120-96=24项,即比96项所表示的五位数大的五位数有24个,所以小于以5打头的五位数中最大的一个就是该数列的第96项.即为45321.8分因为1,2,3,4,5各在万位上时都有A个五位数,所以万位上数字的和为:(1+2+3+4+5)A1000010分同理它们在千位、十位、个位

    12、上也都有A个五位数,所以这个数列各项和为:(1+2+3+4+5)A(1+10+100+1000+10000)=152411111=399996012分20.证明:因 3分8分10分显然能被25整除,25n能被25整除,所以能被25整除.12分21. 设的展开式的通项为.6分若它为常数项,则,代入上式.即常数项是27,从而可得中n=7,10分同理由二项展开式的通项公式知,含的项是第4项,其二项式系数是35.14分22. 由已知得:,又,2分所以首项.4分,所以除以19的余数是5,即6分的展开式的通项,若它为常数项,则,代入上式.从而等差数列的通项公式是:,10分设其前k项之和最大,则,解得k=25或k=26,故此数列的前25项之和与前26项之和相等且最大,.14分

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:第一章计数原理单元测试题(DOC 10页).doc
    链接地址:https://www.163wenku.com/p-5624978.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库