第二学期期末高数下考试试卷及答案1(DOC 25页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《第二学期期末高数下考试试卷及答案1(DOC 25页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二学期期末高数下考试试卷及答案1DOC 25页 第二 学期 期末 高数下 考试 试卷 答案 DOC 25
- 资源描述:
-
1、第二学期期末高数(下)考试试卷及答案1一、 填空题(每空 3 分,共 15 分) 1.设,则.2.曲面在点处的切平面方程是.3.交换累次积分的次序:.4.设闭区域D是由分段光滑的曲线L围成,则:使得格林公式: 成立的充分条件是:.其中L是D的取正向曲线;5.级数的收敛域是.二、 单项选择题 (每小题3分,共15分)1.当,时,函数的极限是 A.等于0; B. 等于; C. 等于; D. 不存在.2.函数在点处具有偏导数,是函数在该点可微分的 A.充分必要条件; B.充分但非必要条件;C.必要但非充分条件; D. 既非充分又非必要条件.3.设,则 A.; B. ; C. ; D. .4.若级数在
2、处收敛,则此级数在处A.绝对收敛; B.条件收敛;C.发散; D.收敛性不确定.5.微分方程的特解应设为 A. ; B. ; C. ; D. .三.(8分)设一平面通过点,而且通过直线,求该平面方程.解: 平行该平面该平面的法向量所求的平面方程为:即:四.(8分)设,其中具有二阶连续偏导数,试求和.解:令,五.(8分)计算对弧长的曲线积分其中是圆周与直线在第一象限所围区域的边界.解: 其中: : : : 而 故: 六、(8分)计算对面积的曲面积分,其中为平面在第一卦限中的部分.解: ,七.(8分)将函数,展开成的幂级数.解:, 而 , , , 八.(8分)求微分方程:的通解.解:, 原方程为:
3、 通解为: 九.幂级数: 1.试写出的和函数;(4分)2.利用第1问的结果求幂级数的和函数.(8分)解:1、 于是 2、令: 由1知: 且满足: 通解: 由,得:;故: 十.设函数在上连续,且满足条件 其中是由曲线,绕轴旋转一周而成的曲面与平面(参数)所围成的空间区域。1、将三重积分写成累次积分的形式;(3分)2、试求函数的表达式.(7分)解:1、旋转曲面方程为: 由,得: 故在面的投影区域为:2、由1得: 记: 则: 两边乘以:,再在 上积分得: 解得: 故: 第二学期期末高数(下)考试试卷及答案2三、 填空题(每空 3 分,共 15 分) 1. 曲线,绕轴旋转一周所得到的旋转曲面的方程是.
4、2.曲线在点处的法平面方程是.3. 设,其中具有二阶连续导数,且,,则.4. 级数,当满足不等式时收敛.5.级数的收敛域是.四、 单项选择题 (每小题3分,共15分)1.设与为非零向量,则是 A. 的充要条件; B. 的充要条件; C. 的充要条件; D. 的必要但非充分条件.2.平面的位置是 A.垂直于轴; B.平行于轴;C.平行于面; D. 通过轴.3.设函数,则下列说法正确的是 A.存在且在点处的两个偏导数也存在; B. 存在但在点处的两个偏导数不存在; C. 不存在但在点处的两个偏导数存在; D. 不存在且在点处的两个偏导数也不存在; 4.曲线为圆周 ,则等于A. ; B. ;C. ;
5、 D. .5. 设正项级数收敛,则必有 A. ; B. ;C. ; D. .三.(8分)在平面上求一直线,使得它与直线 垂直相交。解:方法1:直线的方向向量为 它与平面的交点为所求直线通过这一点,所求直线的方向向量为:故所求的直线方程为:方法2:直线的方向向量为 它与平面的交点为所求直线通过这一点,过交点且与直线垂直的平面方程为:即: 故所求的直线方程为: 或:四.(8分)设是由方程 所确定的隐函数, 求: ,和,解:设,则:,当,时,五.(8分)计算曲线积分其中为从经的上半圆到的一弧段。解:由 知与路经无关。 取,作新路经折线,于是:六、(8分)利用高斯公式计算曲面积分, 其中为球面:的上半
6、部分的上侧.解: 作 : 取下侧.则 而 故:七.(8分)将函数,展开成的幂级数.解: 而: 八.(8分)求微分方程:的通解.解: 是特征方程的单根, 所以设 代入原方程得: 故原方程的通解为: 九. (12分)求由曲面和所围成立体的体积.解: 十. (10分)设是第一象限内连接点, 的一段连续曲线,为该曲线上任意 一点,点为在轴上的投影, 为坐标原点。若梯形的面积与曲边三角形的面积之和为。试建立所满足的微分方程,并求的表达式。解:梯形的面积为: 曲边三角形的面积为: 根据题意得: 两边关于求导得: 即: 故: 由: ,得:,故: 第二学期高数(下)期末考试试卷及答案3一、 填空题(每空 3
展开阅读全文