实际问题与一元二次方程(第二)课件.ppt
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《实际问题与一元二次方程(第二)课件.ppt》由用户(ziliao2023)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 实际问题 一元 二次方程 第二 课件
- 资源描述:
-
1、实际问题与一元二次方程实际问题与一元二次方程 (二)(二)看庄中学马忠伟制作看庄中学马忠伟制作2012.9.24.复习:复习:列方程解应用题有哪些步骤列方程解应用题有哪些步骤 对于这些步骤,应通过解各种类型对于这些步骤,应通过解各种类型的问题,才能深刻体会与真正掌握列方程的问题,才能深刻体会与真正掌握列方程解应用题。解应用题。上一节,我们学习了解决上一节,我们学习了解决“平平均均增长增长(下降下降)率问题率问题”,现在,我们,现在,我们要学习解决要学习解决“面积、体积问题面积、体积问题。实际问题与一元二次方程(二)实际问题与一元二次方程(二)面积、体积问题面积、体积问题一、复习引入一、复习引入
2、 1 1直角三角形的面积公式是什么?直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?一般三角形的面积公式是什么呢?2 2正方形的面积公式是什么呢?正方形的面积公式是什么呢?长方形的面积公式又是什么?长方形的面积公式又是什么?3 3梯形的面积公式是什么?梯形的面积公式是什么?4 4菱形的面积公式是什么?菱形的面积公式是什么?5 5平行四边形的面积公式是什么?平行四边形的面积公式是什么?6 6圆的面积公式是什么?圆的面积公式是什么?(二)几何问题(二)几何问题 方法提示:方法提示:1)1)主要集中在几何图形的主要集中在几何图形的面积面积问题问题,这类这类问题的问题的面积公式面积公式是等量
3、关系;是等量关系;如果图形不规则应如果图形不规则应割割或或补补成规则图形成规则图形,找出各部分面找出各部分面积之间的关系积之间的关系,再运用规则图形的面积公式列出方程再运用规则图形的面积公式列出方程;2)2)与直角三角形有关的问题:直角三角形两直角边的与直角三角形有关的问题:直角三角形两直角边的平方和等于斜边的平方是这类问题的等量关系,即用勾平方和等于斜边的平方是这类问题的等量关系,即用勾股定理列方程。股定理列方程。巩固练习:巩固练习:如图,一块长方形铁板,长是宽的如图,一块长方形铁板,长是宽的2 2倍,倍,如果在如果在4 4个角上截去边长为个角上截去边长为5cm5cm的小正方形,的小正方形,
4、然后把四边折起来,做成一个没有盖的盒子,然后把四边折起来,做成一个没有盖的盒子,盒子的容积是盒子的容积是3000cm3000cm,求铁板的长和宽。,求铁板的长和宽。要设计一本书的封面要设计一本书的封面,封面长封面长27,宽宽21,正中正中央是一个与整个封面长宽比例相同的矩形央是一个与整个封面长宽比例相同的矩形,如果如果要使四周的边衬所占面积是封面面积的四分之要使四周的边衬所占面积是封面面积的四分之一一,上、下边衬等宽上、下边衬等宽,左、右边衬等宽左、右边衬等宽,应应如设计如设计四四周边衬的宽度周边衬的宽度?2721分析分析:这本书的长宽之比是这本书的长宽之比是9:7,依题知正中依题知正中央的矩
5、形两边之比也为央的矩形两边之比也为9:7解法一解法一:设正中央的矩形两边分别为设正中央的矩形两边分别为9xcm,7xcm依题意得依题意得21274379 xx解得解得 2331x),(2332舍去不合题意x故上下边衬的宽度为故上下边衬的宽度为:左右边衬的宽度为左右边衬的宽度为:8.143275422339272927 x4.143214222337212721 x 要设计一本书的封面要设计一本书的封面,封面长封面长27,宽宽21,正中正中央是一个与整个封面长宽比例相同的矩形央是一个与整个封面长宽比例相同的矩形,如果如果要使四周的边衬所占面积是封面面积的四分之要使四周的边衬所占面积是封面面积的四
6、分之一一,上、下边衬等宽上、下边衬等宽,左、右边衬等宽左、右边衬等宽,应如何设应如何设计四周边衬的宽度计四周边衬的宽度?2721分析分析:这本书的长宽之比是这本书的长宽之比是9:7,正中央的正中央的矩形两边之比也为矩形两边之比也为9:7,由此判断上下边由此判断上下边衬与左右边衬的宽度之比也为衬与左右边衬的宽度之比也为9:7解法二解法二:设上下边衬的宽为设上下边衬的宽为9xcm,左右边衬宽为,左右边衬宽为7xcm依题意得依题意得212743)1421)(1827(xx解方程得解方程得4336x(以下同学们自己完成以下同学们自己完成)方程的哪个根合方程的哪个根合乎实际意义乎实际意义?为什么为什么?
7、例例2 2:某校为了美化校园某校为了美化校园,准备在一块长准备在一块长3232米米,宽宽2020米的长方形场地上修筑若干条道路米的长方形场地上修筑若干条道路,余余下部分作草坪下部分作草坪,并请全校同学参与设计并请全校同学参与设计,现在现在有两位学生各设计了一种方案有两位学生各设计了一种方案(如图如图),),根据根据两种设计方案各列出方程两种设计方案各列出方程,求图中道路的宽求图中道路的宽分别是多少分别是多少?使图使图(1),(2)(1),(2)的草坪的草坪面积为面积为540540米米2 2.(1)(2)(1)解解:(1):(1)如图,设道路的宽为如图,设道路的宽为x米,则米,则540)220)
8、(232(xx化简得,化简得,025262xx0)1)(25(xx1,2521xx其中的其中的 x=25超出了原矩形的宽,应舍去超出了原矩形的宽,应舍去.图图(1)中道路的宽为中道路的宽为1米米.则横向的路面面积为则横向的路面面积为 ,分析:此题的相等关系分析:此题的相等关系是矩形面积减去道路面是矩形面积减去道路面积等于积等于540540米米2 2。解法一、解法一、如图,设道路的宽为如图,设道路的宽为x x米,米,32x 32x 米米2 2纵向的路面面积为纵向的路面面积为 。20 x 20 x 米米2 2注意:这两个面积的重叠部分是注意:这两个面积的重叠部分是 x x2 2 米米2 2所列的方
9、程是不是所列的方程是不是32 20(3220)540 xx?图中的道路面积不是图中的道路面积不是3220 xx米米2 2。(2)而是从其中减去重叠部分,即应是而是从其中减去重叠部分,即应是23220 xxx米米2所以正确的方程是:所以正确的方程是:232 203220540 xxx化简得,化简得,2521000,xx其中的其中的 x=50 x=50超出了原矩形的长和宽,应舍去超出了原矩形的长和宽,应舍去.取取x=2x=2时,道路总面积为:时,道路总面积为:232 2 20 2 2 =100(米米2)草坪面积草坪面积=32 20 100=540(米(米2)答:所求道路的宽为答:所求道路的宽为2
10、2米。米。122,50 xx(2)解法二:解法二:我们利用我们利用“图形经过移动,图形经过移动,它的面积大小不会改变它的面积大小不会改变”的道理,的道理,把纵、横两条路移动一下,使列把纵、横两条路移动一下,使列方程容易些(目的是求出路面的方程容易些(目的是求出路面的宽,至于实际施工,仍可按原图宽,至于实际施工,仍可按原图的位置修路)的位置修路)(2)(2)如图,设路宽为如图,设路宽为x x米米,则,则草坪矩形草坪矩形的长的长 ,草坪矩形草坪矩形的宽的宽 。相等关系是:草坪长相等关系是:草坪长草坪宽草坪宽=540=540米米2 2(20-x)(20-x)米米(32-x)32-x)米米即即3220
11、540.xx化简得:化简得:212521000,50,2xxxx再往下的计算、格式书写与解法再往下的计算、格式书写与解法1 1相同。相同。1.如图是宽为如图是宽为20米米,长为长为32米的矩形耕地米的矩形耕地,要修筑要修筑同样宽的三条道路同样宽的三条道路(两条纵向两条纵向,一条横向一条横向,且互相垂且互相垂直直),把耕地分成六块大小相等的试验地把耕地分成六块大小相等的试验地,要使试验要使试验地的面积为地的面积为570平方米平方米,问问:道路宽为多少米道路宽为多少米?解解:设道路宽为设道路宽为x x米,米,则则570)20)(232(xx化简得,化简得,035362xx0)1)(35(xx1,3
展开阅读全文