教师职称考试(初中数学试卷)72025(DOC 5页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《教师职称考试(初中数学试卷)72025(DOC 5页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教师职称考试初中数学试卷72025DOC 5页 教师 职称 考试 初中 数学试卷 72025 DOC
- 资源描述:
-
1、中小学教师教学能力水平考核初中数学试卷应考教师须知:1.本卷分三个部分,共9道题,满分100分,考试时间120分钟.2.答题前,请在密封区内填写市(县)名、校名、姓名、准考证号和所申报的职称.3.答题要做到书写端正,字迹清楚,行款整齐,卷面整洁.4.加*号的试题,申报高级职称者必做,申报中级职称者不做.题号第一部分第二部分第三部分总分得分第一部分(30分)1数学课程标准在课程的目标中,不仅使用“了解,理解,掌握和灵活运用”等刻画知识技能的目标动词,而且使用了“经历(感受),体验(体会),探索”等刻画数学活动水平的过程性目标动词.请结合你的具体教学,谈谈你在教学中如何实施这些过程性的目标.根据基
2、础教育课程改革纲要(试行),结合数学教育的特点,标准明确了义务教育阶段数学课程的总目标,并从知识与技能、数学思考、解决问题、情感与态度等四个方面作出了进一步的阐述.标准中不仅使用了了解(认识)、理解、掌握、灵活运用等刻画知识技能的目标动词,而且使用了经历(感受)、体验(体会)、探索等刻画数学活动水平的过程性目标动词,从而更好地体现了标准对学生在数学思考、解决问题以及情感与态度等方面的要求.知识技能目标了解(认识)能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象.理解能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系.掌握能
3、在理解的基础上,把对象运用到新的情境中.灵活运用能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。过程性目标经历(感受)在特定的数学活动中,获得一些初步的经验.体验(体会)参与特定的数学活动,在具体情境中初步认识对象的特征,获得一些经验.探索主动参与特定的数学活动,通过观察、实验、推理等活动发现对象的某些特征或与其他对象的区别和联系.2.目前我们已经进入了信息时代,计算机在人类生产生活中起到了举足轻重的作用.请说明数学与计算机的结合有着哪些重要意义?数学课程的设计应如何重视现代信息技术的运用?数学与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的发展,使
4、得数学可以更好地帮助我们探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为我们交流信息提供了一种有效而简捷的手段。在数学课程的设计中,应充分考虑计算器对数学学习内容和方式的影响,大力开发并向学生提供更为丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意并有更多的精力投入到现实的,探索性的数学活动中.第二部分(30分)3.同一个数学问题,由于观察的角度不同,对问题的分析,理解的层次不同,就可以导致转化目标与方法的不同.但共同的目的都是为了做到化繁为简,化隐为显,化难为易,化未知为已知,化一般为特殊,化抽象为具体请说明在利用化归思想解决思
5、想问题时,重点要注意的问题是什么?并举出一个你印象最为深刻的利用化归思想解题的例子.参考答案:一、方程思想的运用所谓方程思想,就是从分析问题的数量关系入手,通过设定未知数,把问题中的已知与未知量的数量关系,转化为方程或方程组等数学模型,然后利用方程的理论或方法,使问题得到解决。用方程思想分析、处理问题,思路清晰,灵活、简便.用方程思想的核心是揭示题目中隐含的数量关系,设未知数、构造方程,沟通已知与未知的联系,从而使问题得到解决.二、数形结合的思想运用数学是研究现实世界空间形式和数量关系的科学。“数”与“形”是数学中的两个最基本的概念,每一个几何图形中都蕴含着一定的数量关系;而数量关系又常常可以
6、通过几何图形做出直观的反映和描述,所以数形结合也就成为研究数学问题的重要思想方法。也就是说教师、学生都要投入到教学活动中来。学生的参与尤其重要,如果没有学生的积极参与,这样的教学活动绝不会是成功的.如定理教学是数学教学的重点.如何使学生发现定理的形成过程、定理证明思维来历,特别是辅助线的添加方法一直是教学中研究的重点.在三角形中位线定理一节课的教学中,我们运用计算机辅助教学手段,采用几何面板软件,给学生创设了一个理想的情境,所画的三角形可以任意变化,(体现定理对于任意三角形都成立)可测算出一组同位角始终相等,中位线的长是第三边长的一半.学生经过对图形的观察很容易得到定理的结论.定理的证明实质是
7、经过平移变换或旋转变换,将三角形图形转化为平行四边形而证明的.(几何画板)能很好地演示上述过程。所以,定理的证明思路、辅助线的添加方法都显得十分自然.在教师的引导下,学生积极地参与,整个教学过程是学生的思维步步深入的过程,达到了理想的教学效果.数形结合的思想,就是把问题中的数量关系和空间形式结合起来加以考察的思想。在解题方法上,“数”与“形”相互转化,从而使问题化难为易、化繁为简,达到解决问题的目的。数形结合思想的应用分为两种情形:一种是借助于数的精确性来阐明形的某些属性,即“以数论形”;另一种是借助于形的几何直观性来表示数之间的某些关系,即“以形促数”。运用数形结合思想解题,易于寻找解题途径
展开阅读全文