书签 分享 收藏 举报 版权申诉 / 28
上传文档赚钱

类型吉林省长春市中考数学模拟试卷(含答案)(DOC 28页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5597173
  • 上传时间:2023-04-26
  • 格式:DOC
  • 页数:28
  • 大小:498KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《吉林省长春市中考数学模拟试卷(含答案)(DOC 28页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    吉林省长春市中考数学模拟试卷含答案DOC 28页 吉林省 长春市 中考 数学模拟 试卷 答案 DOC 28 下载 _模拟试题_中考复习_数学_初中
    资源描述:

    1、精品资料 吉林省长春市中考数学模拟试卷(五)一、选择题(共8小题,每小题3分,满分24分)1在数3,2,0,3中,大小在1和2之间的数是()A3B2C0D32不等式3x+101的解集在数轴上表示正确的是()ABCD3由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()ABCD4一次函数y=x2的图象经过点()A(2,0)B(0,0)C(0,2)D(0,2)5某班七个兴趣小组人数分别为4,4,5,x,6,6,7已知这组数据的平均数是5,则这组数据的中位数是()A7B6C5D46下列轴对称图形中,对称轴最多的是()ABCD7如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若

    2、BF=6,AB=5,则AE的长为()A4B6C8D108如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=x+6于B、C两点,若函数y=(x0)的图象ABC的边有公共点,则k的取值范围是()A5k20B8k20C5k8D9k20二、填空题(共6小题,每小题3分,满分18分)9若2x+1=3,则6x+3的值为10表格描述的是y与x之间的函数关系: x2 02 4 y=kx+b31 m n 则m与n的大小关系是11如图,点A、C、F、B在同一直线上,CD平分ECB,FGCD若ECA=58,则GFB的大小为12如图,正六边形ABCDEF内接于O,若O的半径为3,则阴影部分的面积为(结果保留)

    3、 13如图,平面直角坐标中,半径为2的P的圆心P的坐标为(3,0),将P沿x轴正方向平移,使P与y轴相交,则平移的距离d的取值范围是14如图,抛物线y=ax24和y=ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D当四边形ACBD的面积为40时,a的值为三、解答题(共10小题,满分78分)15先化简,再求值:2a(a+2b)(a+2b)2,其中a=1,b=16一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?17小明参

    4、加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品(1)如果随机翻1张牌,那么抽中20元奖品的概率为(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?18如图,在ABC中,D、E分别是边AB、AC的中点,延长BC至点F,使得CF=BC,连结CD、DE、EF(1)求证:四边形CDEF是平行四边形(2)若四边形CDEF的面积为8,则ABC的面积为19如图,某高楼CD与处地面垂直,要在高楼前的地面A处安装某种射灯,安装后,射灯发出的光线与地面的最大夹角DAC为70,光线与地面的最小夹角DAB为35,要使射灯发

    5、光时照射在高楼上的区域宽BC为50米,求A处到高楼的距离AD(结果精确到0.1米)【参考数据:sin70=0.94,cos70=0.34,tan70=2.75,sin35=0.57,cos35=0.82,tan35=0.70】20某校随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查进行了统计,并绘制了如下不完整的条形统计图和扇形统计图结合图中信息,解答下列问题:(1)求本次共调查的学生人数(2)求被调查的学生中,最喜爱丁类图书的学生人数(3)求被调查的学生中,最喜爱甲类图书的人数占本次被调查人数的百分比(4

    6、)该学校共有学生1600人,估计该校最喜爱丁类图书的人数21探索:如图,以ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角ABD和等腰直角ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由应用:如图,要测量池塘两岸B、E两地之间的距离,已知测得ABC=45,CAE=90,AB=BC=100米,AC=AE,求BE的长22从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小

    7、明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系(1)小明骑车在平路上的速度为km/h,他在乙地休息了h(2)分别求线段AB、EF所对应的函数关系式(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程23如图,平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(1,0)、B(3,0),与y轴交于点C,连结BC点P是BC上方抛物线上一点,过点P作y轴的平行线,交BC于点N,分别过P、N两点作x轴的平行线,交抛物线的对称轴于点Q、M,设P点的横坐标为m(1)求抛物线所对应的函数关系式(2)当点P在抛物线对称轴

    8、左侧时,求四边形PQMN周长的最大值(3)当四边形PQMN为正方形时,求m的值24如图,平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B的坐标为(2,4),将矩形OABC绕着点A顺时针旋转90得到矩形AFED,直线y=kx+b经过点G(4,0),交y轴于点H(1)点D、E的坐标分别为(2)当直线GH经过EF中点K时,如图,动点P从点C出发,沿着折线CBD以每秒1个单位速度向终点D运动,连结PH、PG,设点P运动的时间为t(秒),PGH的面积为S(平方单位)求直线GH所对应的函数关系式求S与t之间的函数关系式(3)当直线GH经过点E时,如图,点Q是射线BDEF上的点,

    9、过点Q作QMGH于点M,作QNx轴于点N,当QMN为等腰三角形时,直接写出点Q的坐标 吉林省长春市中考数学模拟试卷(五)参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1在数3,2,0,3中,大小在1和2之间的数是()A3B2C0D3【考点】有理数大小比较【分析】根据有理数的大小比较法则比较即可【解答】解:根据0大于负数,小于正数,可得0在1和2之间,故选:C【点评】本题考查了有理数的大小比较的应用,注意:正数都大于0,负数都小于0,正数都大于负数,两个负数比较大小,其绝对值大的反而小2不等式3x+101的解集在数轴上表示正确的是()ABCD【考点】在数轴上表示不等式的解集;解

    10、一元一次不等式【分析】根据解不等式,可得不等式的解集,根据等式的解集在数轴上表示出来(,向右画;,向左画),可得答案【解答】解:由3x+101,解得x3,故选:C【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(,向右画;,向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集有几个就要几个在表示解集时“”,“”要用实心圆点表示;“”,“”要用空心圆点表示3由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()ABCD【考点】简单几何体的三视图【分析】主视图有2列,每列小正方形数目分别为2,

    11、1【解答】解:几何体的主视图有2列,每列小正方形数目分别为2,1,故选A【点评】本题考查实物体的三视图在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉本题画几何体的三视图时应注意小正方形的数目及位置4一次函数y=x2的图象经过点()A(2,0)B(0,0)C(0,2)D(0,2)【考点】一次函数图象上点的坐标特征【分析】分别把x=0,y=0代入解析式y=x2即可求得对应的y,x的值【解答】解:当x=0时,y=2;当y=0时,x=2,因此一次函数y=x2的图象经过点(0,2)、(2,0)故选:D【点评】此题考查一次函数图象上点的坐标特征,在这条

    12、直线上的各点的坐标一定适合这条直线的解析式5某班七个兴趣小组人数分别为4,4,5,x,6,6,7已知这组数据的平均数是5,则这组数据的中位数是()A7B6C5D4【考点】中位数;算术平均数【分析】本题可先算出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数【解答】解:某班七个兴趣小组人数分别为4,4,5,x,6,6,7已知这组数据的平均数是5,x=57445667=3,这一组数从小到大排列为:3,4,4,5,6,6,7,这组数据的中位数是:5故选C【点评】本题考查的是中位数,熟知中位数的定义是解答此题的关键6下列轴对称图形中,对称轴最多的是()ABCD【考点】轴对称图形【分析】

    13、根据轴对称图形的概念求解【解答】解:A有四条对称轴,B有六条,C有三条,D有两条故选:B【点评】掌握好轴对称的概念轴对称的关键是寻找对称轴,两边图象折叠后可重合7如图,在ABCD中,用直尺和圆规作BAD的平分线AG交BC于点E若BF=6,AB=5,则AE的长为()A4B6C8D10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图基本作图【专题】计算题【分析】由基本作图得到AB=AF,加上AO平分BAD,则根据等腰三角形的性质得到AOBF,BO=FO=BF=3,再根据平行四边形的性质得AFBE,所以1=3,于是得到2=3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性

    14、质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长【解答】解:连结EF,AE与BF交于点O,如图,AB=AF,AO平分BAD,AOBF,BO=FO=BF=3,四边形ABCD为平行四边形,AFBE,1=3,2=3,AB=EB,而BOAE,AO=OE,在RtAOB中,AO=4,AE=2AO=8故选C【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分也考查了等腰三角形的判定与性质和基本作图8如图,过点A(4,5)分别作x轴、y轴的平行线,交直线y=x+6于B、C两点,若函数y=(x0)的图象ABC的边有公共点,则k的取值范围是()A

    15、5k20B8k20C5k8D9k20【考点】反比例函数与一次函数的交点问题【专题】探究型【分析】根据题意可以分别求得点B、点C的坐标,从而可以得到k的取值范围,本题得以解决【解答】解:过点A(4,5)分别作x轴、y轴的平行线,交直线y=x+6于B、C两点,点B的纵坐标为5,点C的横坐标为4,将y=5代入y=x+6,得x=1;将x=4代入y=x+6得,y=2,点B的坐标为(1,5),点C的坐标为(4,2),函数y=(x0)的图象与ABC的边有公共点,点A(4,5),点B(1,5),点B(4,2),15k45即5k20,故选A【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找

    16、出所求问题需要的条件二、填空题(共6小题,每小题3分,满分18分)9若2x+1=3,则6x+3的值为9【考点】代数式求值【专题】计算题;实数【分析】原式提取3,将已知等式代入计算即可求出值【解答】解:2x+1=3,原式=3(2x+1)=9,故答案为:9【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键10表格描述的是y与x之间的函数关系: x2 02 4 y=kx+b31 m n 则m与n的大小关系是mn【考点】一次函数图象上点的坐标特征【分析】由一次函数的性质和表格中的数据可知:y随着x的增大而减小,由此判定m、n的大小关系即可【解答】解:当x=2,y=3,x=0,y=1,y随着x

    17、的增大而减小,24,mn故答案为:mn【点评】此题考查一次函数图象上点的坐标特征,一次函数的性质,从表格中得出数据的变化规律是解决问题的关键11如图,点A、C、F、B在同一直线上,CD平分ECB,FGCD若ECA=58,则GFB的大小为61【考点】平行线的性质【分析】求出DCF,根据两直线平行同位角相等即可求出GFB【解答】解:ECA=58,ECD=180ECA=122,CD平分ECF,DCF=ECF=122=61,CDGF,GFB=DCF=61故答案为61【点评】本题考查平行线的性质、角平分线的定义、邻补角的性质等知识解题的关键是利用两直线平行同位角相等解决问题,属于中考常考题型12如图,正

    18、六边形ABCDEF内接于O,若O的半径为3,则阴影部分的面积为3(结果保留)【考点】正多边形和圆;扇形面积的计算【分析】首先连接OC,OE,分别交BD,DF于点M,N,易证得SOBM=SDCM,同理:SOFN=SDEN,则可得S阴影=S扇形OCE【解答】解:连接OC,OE,分别交BD,DF于点M,N,正六边形ABCDEF内接于O,BOC=60,BCD=COE=120,OB=OC,OBC是等边三角形,OBC=OCB=60,OCD=OCB,BC=CD,CBD=CDM=30,BM=DM,OBM=30,SDCM=SBCM,OBM=CBD,OM=CM,SOBM=SBCM,SOBM=SDCM,同理:SOF

    19、N=SDEN,S阴影=S扇形OCE=3故答案为:3【点评】此题考查了正多边形与圆的知识以及扇形的面积公式注意证得S阴影=S扇形OCE是关键13如图,平面直角坐标中,半径为2的P的圆心P的坐标为(3,0),将P沿x轴正方向平移,使P与y轴相交,则平移的距离d的取值范围是1d5【考点】直线与圆的位置关系;坐标与图形性质【分析】平移分在y轴的左侧和y轴的右侧两种情况写出答案即可【解答】解:当P位于y轴的左侧且与y轴相切时,平移的距离为1;当P位于y轴的右侧且与y轴相切时,平移的距离为5故平移的距离d的取值范围是1d5故答案为:1d5【点评】本题考查了直线与圆的位置关系,解题的关键是了解当圆与直线相切

    20、时,点到圆心的距离等于圆的半径14如图,抛物线y=ax24和y=ax2+4都经过x轴上的A、B两点,两条抛物线的顶点分别为C、D当四边形ACBD的面积为40时,a的值为0.16【考点】二次函数综合题【专题】代数几何综合题;压轴题【分析】根据抛物线的解析式求得点A、B、C、D的坐标;然后求得以a表示的AB、CD的距离;最后根据三角形的面积公式求得S四边形ABCD=SABD+SABC,列出关于a的方程,通过解方程求得a值即可【解答】解:抛物线y=ax24和y=ax2+4都经过x轴上的A、B两点,点A、B两点的坐标分别是:(,0)、(,0);又抛物线y=ax24和y=ax2+4的顶点分别为C、D点C

    21、、D的坐标分别是(0,4)、(0,4);CD=8,AB=,S四边形ABCD=SABD+SABC=ABOD+ABOC=ABCD=8=40,即8=40,解得,a=0.16;故答案是:0.16【点评】本题考查了二次函数的综合题解得该题时,须牢记:函数与x轴的交点的纵坐标是0,与y轴的交点的横坐标是0三、解答题(共10小题,满分78分)15先化简,再求值:2a(a+2b)(a+2b)2,其中a=1,b=【考点】整式的混合运算化简求值【专题】计算题【分析】原式第一项利用单项式乘以多项式法则计算,第二项利用完全平方公式化简,去括号合并得到最简结果,把a与b的值代入计算即可求出值【解答】解:原式=2a2+4

    22、aba24ab4b2=a24b2,当a=1,b=时,原式=112=11【点评】此题考查了整式的混合运算化简求值,熟练掌握运算法则是解本题的关键16一辆汽车从A地驶往B地,前路为普通公路,其余路段为高速公路,已知汽车在普通公路上行驶的速度为60km/h,在高速路上行驶的速度为100km/h,汽车从A地到B地一共行驶了2.2h,普通公路和高速公路各是多少km?【考点】二元一次方程组的应用【分析】由题意得:从A地驶往B地,前路段为普通公路,其余路段为高速公路得到:高速公路的长度=普通公路长度的两倍;汽车从A地到B地一共行驶了2.2h最简单的是根据在普通公路的时间和在高速公路的时间提出问题,再设未知数

    23、,列方程组,解答问题【解答】解:设普通公路长为x(km),高速公路长为y(km)根据题意,得,解得,答:普通公路长为60km,高速公路长为120km【点评】本题考查了二元一次方程组的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解17小明参加某网店的“翻牌抽奖”活动,如图,4张牌分别对应价值5,10,15,20(单位:元)的4件奖品(1)如果随机翻1张牌,那么抽中20元奖品的概率为25%(2)如果随机翻2张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总值不低于30元的概率为多少?【考点】列表法与树状图法;概率公式【分析】(1)随机事件A的概率P(A)=

    24、事件A可能出现的结果数所有可能出现的结果数,据此用1除以4,求出抽中20元奖品的概率为多少即可(2)首先应用树状图法,列举出随机翻2张牌,所获奖品的总值一共有多少种情况;然后用所获奖品总值不低于30元的情况的数量除以所有情况的数量,求出所获奖品总值不低于30元的概率为多少即可【解答】解:(1)14=0.25=25%,抽中20元奖品的概率为25%故答案为:25%(2),所获奖品总值不低于30元有4种情况:30元、35元、30元、35元,所获奖品总值不低于30元的概率为:412=【点评】(1)此题主要考查了概率公式,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果

    25、数所有可能出现的结果数(2)此题还考查了列举法与树状图法求概率问题,解答此类问题的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图18如图,在ABC中,D、E分别是边AB、AC的中点,延长BC至点F,使得CF=BC,连结CD、DE、EF(1)求证:四边形CDEF是平行四边形(2)若四边形CDEF的面积为8,则ABC的面积为8【考点】平行四边形的判定与性质【分析】(1)欲证明四边形CDEF是平行四边形,只需推知DECF,DE=CF;(2)在四边形CDEF与ABC中,CF=BC,且它们的高相等【解答】(1)证明:如图,在A

    26、BC中,D、E分别是边AB、AC的中点,DEBC且DE=BC又CF=BC,DE=CF,四边形CDEF是平行四边形(2)解:DEBC,四边形CDEF与ABC的高相等,设为h,又CF=BC,SABC=BCh=CFh=8,故答案是:8【点评】本题考查了平行四边形的判定与性质平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法19如图,某高楼CD与处地面垂直,要在高楼前的地面A处安装某种射灯,安装后,射灯发出的光线与地面的最大夹角DAC为70,光线与地面的最小夹角DAB为35,要使射灯发光时照射在高楼上的区域宽BC为50米,求A处到高楼的距离AD(结果

    27、精确到0.1米)【参考数据:sin70=0.94,cos70=0.34,tan70=2.75,sin35=0.57,cos35=0.82,tan35=0.70】【考点】解直角三角形的应用【分析】根据在RtADB和RtADC中得出关于AD的方程进行计算即可【解答】解:CDAD,CDA=90,在RtADB中,BD=ADtanBAD,在RtADC中,CD=ADtanCAD,ADtan70ADtan35=50,2.75AD0.70AD=50,解得:AD=24.4,答:A处到高楼的距离AD为24.4米【点评】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例需注意通过投影的知识结合图形相似的

    28、性质巧妙地求解或解直角三角形20某校随机抽取部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类,学校根据调查进行了统计,并绘制了如下不完整的条形统计图和扇形统计图结合图中信息,解答下列问题:(1)求本次共调查的学生人数(2)求被调查的学生中,最喜爱丁类图书的学生人数(3)求被调查的学生中,最喜爱甲类图书的人数占本次被调查人数的百分比(4)该学校共有学生1600人,估计该校最喜爱丁类图书的人数【考点】条形统计图;用样本估计总体;扇形统计图【分析】(1)由丙的人数除以占的百分比求出调查的总学生数即可;(2)由总学生数减去已知其他类的学

    29、生数求出丁类的学生数;(3)利用甲类占的百分比乘总人数即可;(4)用总人数乘最喜爱丁类图书的人数所占百分比即可【解答】解:(1)4020%=200(名)答:共调查的学生人为200名;(2)根据题意得:丁类学生数为200(80+65+40)=15(名);(3)最喜爱甲类图书的人数占本次被调查人数的80200100%=40%;(4)1600=120(人)答:该校最喜爱丁类图书的人数为120人【点评】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图并能准确的画图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21探

    30、索:如图,以ABC的边AB、AC为直角边,A为直角顶点,向外作等腰直角ABD和等腰直角ACE,连结BE、CD,试确定BE与CD有怎样数量关系,并说明理由应用:如图,要测量池塘两岸B、E两地之间的距离,已知测得ABC=45,CAE=90,AB=BC=100米,AC=AE,求BE的长【考点】勾股定理的应用;全等三角形的判定与性质【分析】根据全等三角形的判定方法得出CADEAB(SAS),进而利用全等三角形的性质结合勾股定理得出DC的长,进而得出答案【解答】解:探索:BE=CD,理由:BAD=CAE=90,CAD=EAB,在CAD和EAB中,CADEAB(SAS);应用:如图,过点A作ADAB,且A

    31、D=AB,连接BD,由探索,得CADEAB,BE=DC,AD=AB=100m,DAB=90,ABD=45,BD=100m,ABC=45,DBC=90,在RtDBC中,BC=100m,BD=100m,CD=100(m),则BE=100m,答:BE的长为100m【点评】此题主要考查了全等三角形的判定与性质以及勾股定理应用,正确得出CADEAB(SAS)是解题关键22从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每

    32、小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系(1)小明骑车在平路上的速度为15km/h,他在乙地休息了0.1h(2)分别求线段AB、EF所对应的函数关系式(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程【考点】一次函数的应用【分析】(1)分别计算出小明骑车上坡的速度,小明平路上的速度,小明下坡的速度,小明平路上所用的时间,小明下坡所用的时间为,即可解答;(2)根据上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.510x,线段EF所对应的函数关系式

    33、为y=4.5+20(x0.9),即可解答;(3)设小明出发a小时第一次经过丙地,根据题意得到6.510a=20(a+0.85)13.5,求出a的值,即可解答【解答】解:(1)小明骑车上坡的速度为:(6.54.5)0.2=10(km/h),小明平路上的速度为:10+5=15(km/h),小明下坡的速度为:15+5=20(km/h),小明平路上所用的时间为:2(4.515)=0.6h,小明下坡所用的时间为:(6.54.5)20=0.1h所以小明在乙地休息了:10.10.60.2=0.1(h)故答案为:15,0.1;(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所

    34、对应的函数关系式为:y=6.510x,即y=10x+6.5(0x0.2)线段EF所对应的函数关系式为y=4.5+20(x0.9)即y=20x13.5(0.9x1)(3)由题意可知:小明第一次经过丙地在AB段,第二次经过丙地在EF段,设小明出发a小时第一次经过丙地,则小明出发后(a+0.85)小时第二次经过丙地,6.510a=20(a+0.85)13.5解得:a=1(千米)答:丙地与甲地之间的路程为1千米【点评】本题考查了一次函数的应用,解决本题的关键是读懂函数图象,求出一次函数的解析式23如图,平面直角坐标系中,抛物线y=ax2+bx+2与x轴分别交于点A(1,0)、B(3,0),与y轴交于点

    35、C,连结BC点P是BC上方抛物线上一点,过点P作y轴的平行线,交BC于点N,分别过P、N两点作x轴的平行线,交抛物线的对称轴于点Q、M,设P点的横坐标为m(1)求抛物线所对应的函数关系式(2)当点P在抛物线对称轴左侧时,求四边形PQMN周长的最大值(3)当四边形PQMN为正方形时,求m的值【考点】二次函数综合题【分析】(1)设交点式y=a(x+1)(x3),然后把C点坐标代入求出a即可得到抛物线的解析式;(2)先利用对称轴确定抛物线的对称轴方程,再利用待定系数法求出直线BC的解析式,接着利用m表示出PN和PQ,从而得到四边形PQMN周长与m的二次函数关系,然后利用二次函数的性质求四边形PQMN

    36、周长的最大值;(3)分类讨论:当0m1时,利用PQ=PN得到m2+2m=1m;当1m3时,利用PQ=PN得到m2+2m=m1,然后分别解一元二次方程得到满足条件的m的值【解答】解:(1)当x=0时,y=ax2+bx+2=2,则C(0,2),设抛物线解析式为y=a(x+1)(x3),把C(0,2)代入得a1(3)=2,解得a=,所以抛物线的解析式为y=(x+1)(x3),即y=x2+x+2;(2)抛物线与x轴分别交于点A(1,0)、B(3,0),抛物线的对称轴为直线x=1,设直线BC的解析式为y=px+q,把C(0,2),B(3,0)代入得,解得,所以直线BC的解析式为y=x2+2,设P(m,

    37、m2+m+2),则N(m, m+2),PN=m2+m+2(m+2)=m2+2m,而PQ=1m,四边形PQMN周长=2(m2+2m+1m)=m2+2m+2=(m)2+(0m1),当m=时,四边形PQMN周长有最大值,最大值为;(3)当0m1时,PQ=1m,若PQ=PN时,四边形PQMN为正方形,即m2+2m=1m,整理得2m29m+3=0,解得m1=(舍去),m2=,当1m3时,PQ=m1,若PQ=PN时,四边形PQMN为正方形,即m2+2m=m1,整理得2m23m3=0,解得m1=(舍去),m2=,综上所述,当m=或m=时,四边形PQMN为正方形【点评】本题考查了二次函数的综合题:熟练掌握二次

    38、函数图象上点的坐标特征、二次函数的性质和正方形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会解一元二次方程24如图,平面直角坐标系中,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,点B的坐标为(2,4),将矩形OABC绕着点A顺时针旋转90得到矩形AFED,直线y=kx+b经过点G(4,0),交y轴于点H(1)点D、E的坐标分别为D(2,2),E(6,2)(2)当直线GH经过EF中点K时,如图,动点P从点C出发,沿着折线CBD以每秒1个单位速度向终点D运动,连结PH、PG,设点P运动的时间为t(秒),PGH的面积为S(平方单位)求直线GH所对应的函数关系式求S与t之间的函

    39、数关系式(3)当直线GH经过点E时,如图,点Q是射线BDEF上的点,过点Q作QMGH于点M,作QNx轴于点N,当QMN为等腰三角形时,直接写出点Q的坐标【考点】四边形综合题【分析】(1)由矩形的性质和选转的性质即可,(2)利用待定系数法求出GH的解析式,三角形的面积等于另几个三角形的面积的和或差计算;(3)根据运动特点和图形的性质,确定出点Q,N,M的坐标,利用两点间的距离公式求出对应相等,QMN为等腰三角形,分三种情况建立方程求解,即可【解答】(1)解:矩形OABC绕着点A顺时针旋转90得到矩形AFED,且B(2,4),OA=AD=2,OC=AF=4,D(2,2),E(6,2);故答案为D(

    40、2,2),E(6,2);(2)解:E(6,2),G(4,0),K(6,1),直线y=kx+b经过点G,K,直线GH的解析式为y=x2,当0t2时,延长CB交HG于W,如图1,SPHG=SSHWSHCPSPGW= 6126t4(12t)=t+12,当2t4时,延长BA交HG于T,如图2,SPHG=SPTH+SPGT=4(7t)=2t+14,(3)解;当0t2时,如图3,由题意,得N(2,0),Q(2,4t),M(,),QN2=(4t)2,MN2=+,QM2=,()、当QN=QM时,即QN2=QM2,(4t)2=+,t=(舍),()、当QN=QM时,方法同()的一样,得t=(舍),()、当MN=Q

    41、M时,方法同()的一样,得到方程无解,当2t6时,由题意,得N(t,0),Q(t,2),M(,),方法和()一样,分三种情况,()、当QN=QM时,t=6+2(舍),或t=62Q(62,2);()、当QN=MN时,t=8(舍)或t=2,Q(2,2);()、当QM=MN时,t=4,Q(4,2);当6t8时,由题意,得N(6,0),Q(6,8t),M(,),方法和()一样,分三种情况,()、当QN=QM时,t=10+2(舍),或t=102Q(6,22);()、当QN=MN时,t=6(舍)或t=10(舍)()、当QM=MN时,t=8(舍);Q(62,2)或Q(2,2)或Q(4,2)或Q(6,22);【点评】本题是四边形的综合题,涉及到两点间的距离公式,坐标系中面积的计算方法,分段分情况讨论,解本题的关键是用t表示出点的坐标和分情况,本题的计算量比较大

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:吉林省长春市中考数学模拟试卷(含答案)(DOC 28页).doc
    链接地址:https://www.163wenku.com/p-5597173.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库