书签 分享 收藏 举报 版权申诉 / 14
上传文档赚钱

类型天津市南开区高一上期末数学测试卷((含答案))(DOC 15页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5596342
  • 上传时间:2023-04-26
  • 格式:DOC
  • 页数:14
  • 大小:250.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《天津市南开区高一上期末数学测试卷((含答案))(DOC 15页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    天津市南开区高一上期末数学测试卷含答案DOC 15页 天津市 南开区 上期 数学 测试 答案 DOC 15 下载 _考试试卷_数学_高中
    资源描述:

    1、-2019-2020学年天津市南开区高一(上)期末测试数学试卷一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一个是符合题目要求的1(3分)设集合U=n|nN*且n9,A=2,5,B=1,2,4,5,则U(AB)中元素个数为()A4B5C6D72(3分)与=+2k(kZ)终边相同的角是()A345B375CD3(3分)sin80cos70+sin10sin70=()ABCD4(3分)下列函数中是奇函数的是()Ay=x+sinxBy=|x|cosxCy=xsinxDy=|x|cosx5(3分)已知cos0,tan(+)=,则在()A第一象限B第二象限C第三象限D第

    2、四象限6(3分)函数f(x)=log2x+x4的零点在区间为()A(0,1)B(1,2)C(2,3)D(3,4)7(3分)若偶函数f(x)在0,+)上单调递减,设a=f(1),b=f(log0.53),c=f(log231),则()AabcBbacCbcaDcab8(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度(0),若旋转后的四条线段所围成的封闭图形面积为,则=()A或B或C或D或9(3分)函数f(x)=Asin(x+)的单调递减区间为k,k+(kZ),则下列说法错误的是()A函数f(x)的最小正周期为B函数f(x)图象

    3、的对称轴方程为x=+(kZ)C函数f(x)图象的对称中心为(+,0)(kZ)D函数f(x)的单调递减区间为k+,k+(kZ)10(3分)设函数f(x)=,则下列说法正确的是()若a0,则f(f(a)=a;若f(f(a)=a,则a0;若a1,则f(f(a)=;若f(f(a)=,则a1ABCD二、填空题:本大题共5小题,每小题4分,共20分).11(4分)函数f(x)=的定义域为 12(4分)函数f(x)=2cos2xtanx+cos2x的最小正周期为 ;最大值为 13(4分)如果将函数f(x)=sin2x图象向左平移(0)个单位,函数g(x)=cos(2x)图象向右平移个长度单位后,二者能够完全

    4、重合,则的最小值为 14(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,=AOC,=OCB,则sinsin+coscos= 15(4分)设函数f(x)=,若关于x的方程f(x)a=0有三个不等实根x1,x2,x3,且x1+x2+x3=,则a= 三、解答题:本大题共5小题,共50分解答写出文字说明、证明过程或演算过程16(8分)已知集合A=x|2x622x1,B=x|xAN,C=x|axa+1()写出集合B的所有子集;()若AC=C,求实数a的取值范围17(10分)已知函数f(x)=cos(x)sin(x)()判断函数f(x)的奇偶性,并给出证明;()若为第一

    5、象限角,且f(+)=,求cos(2+)的值18(10分)设函数f(x)为R上的奇函数,已知当x0时,f(x)=(x+1)2()求函数f(x)的解析式;()若f(m2+2m)+f(m)0,求m的取值范围19(10分)设某等腰三角形的底角为,顶角为,且cos=()求sin的值;()若函数f(x)=tanx在,上的值域与函数g(x)=2sin(2x)在0,m上的值域相同,求m的取值范围20(12分)函数f(x)=4sinxcos(x+)+1(0),其图象上有两点A(s,t),B(s+2,t),其中2t2,线段AB与函数图象有五个交点()求的值;()若函数f(x)在x1,x2和x3,x4上单调递增,在

    6、x2,x3上单调递减,且满足等式x4x3=x2x1=(x3x2),求x1、x4所有可能取值天津市南开区高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分在每小题给出的四个选项中,只有一个是符合题目要求的1(3分)设集合U=n|nN*且n9,A=2,5,B=1,2,4,5,则U(AB)中元素个数为()A4B5C6D7【解答】解:A=2,5,B=1,2,4,5,AB=1,2,4,5,又集合U=n|nN*且n9=1,2,3,4,5,6,7,8,9,U(AB)=3,6,7,8,9,故U(AB)共有5个元素,故选:B2(3分)与=+2k(kZ)终边相同的角是()A

    7、345B375CD【解答】解:由=+2k(kZ),得与角终边相同的角是:,360+15=375故选:B3(3分)sin80cos70+sin10sin70=()ABCD【解答】解:sin80cos70+sin10sin70=cos10cos70+sin10sin70=故选:C4(3分)下列函数中是奇函数的是()Ay=x+sinxBy=|x|cosxCy=xsinxDy=|x|cosx【解答】解:A,y=x+sinx,有f(x)=xsinx=f(x),为奇函数;B,y=|x|cosx,f(x)=|x|cos(x)=f(x),为偶函数;C,y=xsinx,f(x)=(x)sin(x)=xsinx=

    8、f(x),为偶函数;D,y=|x|cosx,f(x)=|x|cos(x)=f(x),为偶函数故选:A5(3分)已知cos0,tan(+)=,则在()A第一象限B第二象限C第三象限D第四象限【解答】解:由题意得,tan(+)=,所以=,即,解得tan=0,则在第二或四象限,由cos0得,在第一或四象限,所以在第四象限,故选:D6(3分)函数f(x)=log2x+x4的零点在区间为()A(0,1)B(1,2)C(2,3)D(3,4)【解答】解:f(x)=log2x+x4,在(0,+)上单调递增f(2)=1+24=10,f(3)=log2310根据函数的零点存在性定理得出:f(x)的零点在(2,3)

    9、区间内函数f(x)=log2x+x4的零点所在的区间为(2,3),故选:C7(3分)若偶函数f(x)在0,+)上单调递减,设a=f(1),b=f(log0.53),c=f(log231),则()AabcBbacCbcaDcab【解答】解:偶函数f(x)在0,+)上单调递减,f(x)在(,0上单调递增,log0.53=1,log231=log21.5(0,1),a=f(1),b=f(log0.53),c=f(log231),bac故选:B8(3分)如图,正方形ABCD边长为1,从某时刻起,将线段AB,BC,CD,DA分别绕点A,B,C,D顺时针旋转相同角度(0),若旋转后的四条线段所围成的封闭图

    10、形面积为,则=()A或B或C或D或【解答】解:如图所示,旋转后的四条线段所围成的封闭图形为正方形,边长为cossin,由题意可得:(cossin)2=,可得:cossin=,2sincos=又0,可得:cos+sin=,所以:由可得:cos=故=或故选:A9(3分)函数f(x)=Asin(x+)的单调递减区间为k,k+(kZ),则下列说法错误的是()A函数f(x)的最小正周期为B函数f(x)图象的对称轴方程为x=+(kZ)C函数f(x)图象的对称中心为(+,0)(kZ)D函数f(x)的单调递减区间为k+,k+(kZ)【解答】解:由题意,=2,函数f(x)=Asin(x+)的周期为,=,f(x)

    11、=Asin(2x+),x=+,2x+=k+,f(x)=Asin(2x+)0,故选C10(3分)设函数f(x)=,则下列说法正确的是()若a0,则f(f(a)=a;若f(f(a)=a,则a0;若a1,则f(f(a)=;若f(f(a)=,则a1ABCD【解答】解:当a0时,则f(f(a)=a,故正确;当a1时,f(f(a)=,故正确;当0a1,f(f(a)=log0.5(log0.5a)R,故此时存在0a1,使得f(f(a)=a也存在0a1,使得f(f(a)=,故错误;故选:A二、填空题:本大题共5小题,每小题4分,共20分).11(4分)函数f(x)=的定义域为(1,0)(0,+)【解答】解:由

    12、题意得:,解得:x1且x0,故函数的定义域是(1,0)(0,+),故答案为:(1,0)(0,+)12(4分)函数f(x)=2cos2xtanx+cos2x的最小正周期为;最大值为【解答】解:函数f(x)=2cos2xtanx+cos2x=2sinxcosx+cos2x=sin2x+cos2x =sin(2x+)的最小正周期为=,最大值为,故答案为:,13(4分)如果将函数f(x)=sin2x图象向左平移(0)个单位,函数g(x)=cos(2x)图象向右平移个长度单位后,二者能够完全重合,则的最小值为【解答】解:将函数y=sin2x的图象向左平移(0)个单位得到:y=sin2(x+)=sin(2

    13、x+2)的图象,将函数g(x)=cos(2x)图象向右平移个长度单位后,可得函数y=cos2(x)=cos(2x2)=sin(2x2)=sin(2x+2)=sin(2x2+)的图象,二者能够完全重合,由题意可得,即:2x+2=2x2+2k,kZ,解得:=k+,(kZ)当k=0时,min=故答案为:14(4分)如图所示,已知A,B是单位圆上两点且|AB|=,设AB与x轴正半轴交于点C,=AOC,=OCB,则sinsin+coscos=【解答】解:由题意,OAC=,A,B是单位圆上两点且|AB|=,sinsin+coscos=cos()=cosOAC=,故答案为15(4分)设函数f(x)=,若关于

    14、x的方程f(x)a=0有三个不等实根x1,x2,x3,且x1+x2+x3=,则a=【解答】解:如图所示,画出函数f(x)的图象,不妨设x1x2x3,则x1+x2=2=3,又x1+x2+x3=,x3=a=故答案为:三、解答题:本大题共5小题,共50分解答写出文字说明、证明过程或演算过程16(8分)已知集合A=x|2x622x1,B=x|xAN,C=x|axa+1()写出集合B的所有子集;()若AC=C,求实数a的取值范围【解答】解:()对于集合A,因为2x622x1,则x62x0,解可得:0x2即A=x|0x2,又由B=x|xAN,则B=0,1,2;故B的子集有、0、1、2、0,1、0,2、1,

    15、2、0,1,2;()若AC=C,则C是A的子集,则必有:,解可得:0a1,即a的取值范围是:0,117(10分)已知函数f(x)=cos(x)sin(x)()判断函数f(x)的奇偶性,并给出证明;()若为第一象限角,且f(+)=,求cos(2+)的值【解答】解:()结论:函数f(x)为定义在R上的偶函数证明:函数f(x)的定义域为R,关于原点对称,f(x)=cos(x)sin(x)=f(x)=因此,函数f(x)为定义在R上的偶函数;()f(+)=,由于为第一象限角,故,cos(2+)=18(10分)设函数f(x)为R上的奇函数,已知当x0时,f(x)=(x+1)2()求函数f(x)的解析式;(

    16、)若f(m2+2m)+f(m)0,求m的取值范围【解答】解:()函数f(x)为R上的奇函数,f(0)=0,若x0,则x0,当x0时,f(x)=(x+1)2当x0时,f(x)=(x+1)2=(x1)2f(x)是奇函数,f(x)=(x1)2=f(x),则f(x)=(x1)2,x0,则函数f(x)的解析式f(x)=;()若f(m2+2m)+f(m)0,则f(m2+2m)f(m)=f(m),当x0时,f(x)=(x+1)2为减函数,且f(x)1f(0),当x0时,f(x)=(x1)2为减函数,且f(x)1f(0),则函数f(x)在R上是减函数,则m2+2mm,即m2+3m0,则3m0,即m的取值范围是

    17、(3,0)19(10分)设某等腰三角形的底角为,顶角为,且cos=()求sin的值;()若函数f(x)=tanx在,上的值域与函数g(x)=2sin(2x)在0,m上的值域相同,求m的取值范围【解答】解:()由题意,=2,cos=cos2=2sin21(0,),sin=;()由题意,函数f(x)=tanx在,上单调递增,(0,),sin=,cos=,tan=2,函数f(x)=tanx在,上的值域为,2,函数g(x)=2sin(2x)在0,m上的值域为,2,y=sinx在,2m上的取值范围是,1,2m,m20(12分)函数f(x)=4sinxcos(x+)+1(0),其图象上有两点A(s,t),B(s+2,t),其中2t2,线段AB与函数图象有五个交点()求的值;()若函数f(x)在x1,x2和x3,x4上单调递增,在x2,x3上单调递减,且满足等式x4x3=x2x1=(x3x2),求x1、x4所有可能取值【解答】解:()f(x)=4sinxcos(x+)+1=,由于|AB|=2,且线段AB与函数f(x)图象有五个交点,因此,故=1;()由()得,函数f(x)=,由题意知,因此x4x3=x2x1=(x3x2)=即,函数f(x)在x1,x2上单调递增,在x2,x3上单调递减,f(x)在x2处取得最大值,即=2,即=-

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:天津市南开区高一上期末数学测试卷((含答案))(DOC 15页).doc
    链接地址:https://www.163wenku.com/p-5596342.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库