最新全国普通高等学校高考数学模拟试卷(理科)(一)(DOC 25页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新全国普通高等学校高考数学模拟试卷(理科)(一)(DOC 25页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新全国普通高等学校高考数学模拟试卷理科一DOC 25页 最新 全国 普通高等学校 高考 数学模拟 试卷 理科 DOC 25 下载 _模拟试题_高考专区_数学_高中
- 资源描述:
-
1、学习-好资料2018年全国普通高等学校高考数学模拟试卷(理科)(一)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)已知集合A=x|x2+4x0,C=x|x=2n,nN,则(AB)C=()A2,4B0,2C0,2,4Dx|x=2n,nN2(5分)设i是虚数单位,若,x,yR,则复数x+yi的共轭复数是()A2iB2iC2+iD2+i3(5分)已知等差数列an的前n项和是Sn,且a4+a5+a6+a7=18,则下列命题正确的是()Aa5是常数BS5是常数Ca10是常数DS10是常数4(5分)七巧板是我们祖先的一项创造,被誉为“东
2、方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()ABCD5(5分)已知点F为双曲线C:(a0,b0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()ABCD6(5分)已知函数则()A2+BCD7(5分)执行如图所示的程序框图,则输出的S的值为()ABCD8(5分)已知函数(0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A可由函数g(x)=cos4x的图象向左平移个单位而得B可由函数g
3、(x)=cos4x的图象向右平移个单位而得C可由函数g(x)=cos4x的图象向右平移个单位而得D可由函数g(x)=cos4x的图象向右平移个单位而得9(5分)的展开式中剔除常数项后的各项系数和为()A73B61C55D6310(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()ABCD11(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A16B20C
4、24D3212(5分)若函数y=f(x),xM,对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数x,都有af(x)=f(x+T)恒成立,此时T为f(x)的类周期,函数y=f(x)是M上的a级类周期函数若函数y=f(x)是定义在区间0,+)内的2级类周期函数,且T=2,当x0,2)时,函数若x16,8,x2(0,+),使g(x2)f(x1)0成立,则实数m的取值范围是()ABCD二、填空题(每题5分,满分20分,将答案填在答题纸上)13(5分)已知向量,且,则= 14(5分)已知x,y满足约束条件则目标函数的最小值为 15(5分)在等比数列an中,a2a3=2a1,且a4与2a7
5、的等差中项为17,设bn=a2n1a2n,nN*,则数列bn的前2n项和为 16(5分)如图,在直角梯形ABCD中,ABBC,ADBC,点E是线段CD上异于点C,D的动点,EFAD于点F,将DEF沿EF折起到PEF的位置,并使PFAF,则五棱锥PABCEF的体积的取值范围为 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17(12分)已知ABC的内角A,B,C的对边a,b,c分别满足c=2b=2,2bcosA+acosC+ccosA=0,又点D满足(1)求a及角A的大小;(2)求的值18(12分)在四棱柱ABCDA1B1C1D1中,底面ABCD是正方形,且,A
6、1AB=A1AD=60(1)求证:BDCC1;(2)若动点E在棱C1D1上,试确定点E的位置,使得直线DE与平面BDB1所成角的正弦值为19(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗2018年春节前夕,A市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,速冻水饺的该项质量指标值Z服从正态分布N(,2),利用该正态分布,求Z落在(14.55,38.45)内的概率;将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水
7、饺中这种质量指标值位于(10,30)内的包数为X,求X的分布列和数学期望附:计算得所抽查的这100包速冻水饺的质量指标的标准差为;若,则P(Z+)=0.6826,P(2Z+2)=0.954420(12分)已知椭圆C:的离心率为,且以两焦点为直径的圆的内接正方形面积为2(1)求椭圆C的标准方程;(2)若直线l:y=kx+2与椭圆C相交于A,B两点,在y轴上是否存在点D,使直线AD与BD的斜率之和kAD+kBD为定值?若存在,求出点D坐标及该定值,若不存在,试说明理由21(12分)已知函数f(x)=ex2(a1)xb,其中e为自然对数的底数(1)若函数f(x)在区间0,1上是单调函数,试求实数a的
8、取值范围;(2)已知函数g(x)=ex(a1)x2bx1,且g(1)=0,若函数g(x)在区间0,1上恰有3个零点,求实数a的取值范围请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22(10分)在平面直角坐标系xOy中,圆C1的参数方程为(为参数,a是大于0的常数)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C2的极坐标方程为(1)求圆C1的极坐标方程和圆C2的直角坐标方程;(2)分别记直线l:,R与圆C1、圆C2的异于原点的交点为A,B,若圆C1与圆C2外切,试求实数a的值及线段AB的长选修4-5:不等式选讲23已知函数f(x)=|2
9、x+1|(1)求不等式f(x)10|x3|的解集;(2)若正数m,n满足m+2n=mn,求证:f(m)+f(2n)162018年全国普通高等学校高考数学模拟试卷(理科)(一)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)已知集合A=x|x2+4x0,C=x|x=2n,nN,则(AB)C=()A2,4B0,2C0,2,4Dx|x=2n,nN【解答】解:A=x|x2+4x0=x|0x4,=x|343x33=x|4x3,则AB=x|4x4,C=x|x=2n,nN,可得(AB)C=0,2,4,故选:C2(5分)设i
10、是虚数单位,若,x,yR,则复数x+yi的共轭复数是()A2iB2iC2+iD2+i【解答】解:由,得x+yi=2+i,复数x+yi的共轭复数是2i故选:A3(5分)已知等差数列an的前n项和是Sn,且a4+a5+a6+a7=18,则下列命题正确的是()Aa5是常数BS5是常数Ca10是常数DS10是常数【解答】解:等差数列an的前n项和是Sn,且a4+a5+a6+a7=18,a4+a5+a6+a7=2(a1+a10)=18,a1+a10=9,=45故选:D4(5分)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)
11、、一块正方形和一块平行四边形组成的如图是一个用七巧板拼成的正方形中任取一点,则此点取自黑色部分的概率是()ABCD【解答】解:设AB=2,则BC=CD=DE=EF=1,SBCI=,S平行四边形EFGH=2SBCI=2=,所求的概率为P=故选:A5(5分)已知点F为双曲线C:(a0,b0)的右焦点,直线x=a与双曲线的渐近线在第一象限的交点为A,若AF的中点在双曲线上,则双曲线的离心率为()ABCD【解答】解:设双曲线C:的右焦点F(c,0),双曲线的渐近线方程为y=x,由x=a代入渐近线方程可得y=b,则A(a,b),可得AF的中点为(,b),代入双曲线的方程可得=1,可得4a22acc2=0
12、,由e=,可得e2+2e4=0,解得e=1(1舍去),故选:D6(5分)已知函数则()A2+BCD【解答】解:,=cos2tdt=,=()+(cosx)=2故选:D7(5分)执行如图所示的程序框图,则输出的S的值为()ABCD【解答】解:第1次循环后,S=,不满足退出循环的条件,k=2;第2次循环后,S=,不满足退出循环的条件,k=3; 第3次循环后,S=2,不满足退出循环的条件,k=4; 第n次循环后,S=,不满足退出循环的条件,k=n+1;第2018次循环后,S=,不满足退出循环的条件,k=2019第2019次循环后,S=2,满足退出循环的条件,故输出的S值为2,故选:C8(5分)已知函数
13、(0)的相邻两个零点差的绝对值为,则函数f(x)的图象()A可由函数g(x)=cos4x的图象向左平移个单位而得B可由函数g(x)=cos4x的图象向右平移个单位而得C可由函数g(x)=cos4x的图象向右平移个单位而得D可由函数g(x)=cos4x的图象向右平移个单位而得【解答】解:函数=sin(2x)+=sin(2x)(0)的相邻两个零点差的绝对值为,=,=2,f(x)=sin(4x)=cos(4x)=cos(4x)故把函数g(x)=cos4x的图象向右平移个单位,可得f(x)的图象,故选:B9(5分)的展开式中剔除常数项后的各项系数和为()A73B61C55D63【解答】解:展开式中所有
14、各项系数和为(23)(1+1)6=64;=(2x3)(1+),其展开式中的常数项为3+12=9,所求展开式中剔除常数项后的各项系数和为649=73故选:A10(5分)某几何体的三视图如图所示,其中俯视图中六边形ABCDEF是边长为1的正六边形,点G为AF的中点,则该几何体的外接球的表面积是()ABCD【解答】解:如图,可得该几何体是六棱锥PABCDEF,底面是正六边形,有一PAF侧面垂直底面,且P在底面的投影为AF中点,过底面中心N作底面垂线,过侧面PAF的外心M作面PAF的垂线,两垂线的交点即为球心O,设PAF的外接圆半径为r,解得r=,则该几何体的外接球的半径R=,表面积是则该几何体的外接
15、球的表面积是S=4R2=故选:C11(5分)已知抛物线C:y2=4x的焦点为F,过点F分别作两条直线l1,l2,直线l1与抛物线C交于A、B两点,直线l2与抛物线C交于D、E两点,若l1与l2的斜率的平方和为1,则|AB|+|DE|的最小值为()A16B20C24D32【解答】解:抛物线C:y2=4x的焦点F(1,0),设直线l1:y=k1(x1),直线l2:y=k2(x1),由题意可知,则,联立,整理得:k12x2(2k12+4)x+k12=0,设A(x1,y1),B(x2,y2),则x1+x2=,设D(x3,y3),E(x4,y4),同理可得:x3+x4=2+,由抛物线的性质可得:丨AB丨
展开阅读全文