最新初中数学竞赛试题及答案汇编(DOC 138页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《最新初中数学竞赛试题及答案汇编(DOC 138页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新初中数学竞赛试题及答案汇编DOC 138页 最新 初中 数学 竞赛 试题 答案 汇编 DOC 138 下载 _竞赛_数学_初中
- 资源描述:
-
1、_全国初中数学竞赛初赛试题汇编(1998-2018)目录1998年全国初中数学竞赛试卷11999年全国初中数学竞赛试卷62000年全国初中数学竞赛试题解答92001年TI杯全国初中数学竞赛试题B卷142002年全国初中数学竞赛试题152003年“TRULY信利杯”全国初中数学竞赛试题172004年“TRULY信利杯”全国初中数学竞赛试题252005年全国初中数学竞赛试卷302006年全国初中数学竞赛试题322007年全国初中数学竞赛试题382008年全国初中数学竞赛试题462009年全国初中数学竞赛试题472010年全国初中数学竞赛试题522011年全国初中数学竞赛试题572012年全国初中数
2、学竞赛试题602013年全国初中数学竞赛试题732014年全国初中数学竞赛预赛772015年全国初中数学竞赛预赛852016年全国初中数学联合竞赛试题942017年全国初中数学联赛初赛试卷1032018 年初中数学联赛试题105收集于网络,如有侵权请联系管理员删除 1998年全国初中数学竞赛试卷一、选择题:(每小题6分,共30分)1、已知a、b、c都是实数,并且,那么下列式子中正确的是()()()()()2、如果方程的两根之差是1,那么p的值为( )()2()4()()3、在ABC中,已知BD和CE分别是两边上的中线,并且BDCE,BD=4,CE=6,那么ABC的面积等于( )()12()14
3、()16()184、已知,并且,那么直线一定通过第( )象限()一、二()二、三()三、四()一、四5、如果不等式组的整数解仅为1,2,3,那么适合这个不等式组的整数a、b的有序数对(a、b)共有( )()17个()64个()72个()81个二、填空题:(每小题6分,共30分)6、在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上任意一点,PEBD,PFAC,E、F分别是垂足,那么PE+PF=_。7、已知直线与抛物线相交于A、B两点,O为坐标原点,那么OAB的面积等于_。8、已知圆环内直径为acm,外直径为bcm,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的
4、长度为_cm。9、已知方程(其中a是非负整数),至少有一个整数根,那么a=_。10、B船在A船的西偏北450处,两船相距km,若A船向西航行,B船同时向南航行,且B船的速度为A船速度的2倍,那么A、B两船的最近距离是_km。三、解答题:(每小题20分,共60分)11、如图,在等腰三角形ABC中,AB=1,A=900,点E为腰AC中点,点F在底边BC上,且FEBE,求CEF的面积。12、设抛物线的图象与x轴只有一个交点,(1)求a的值;(2)求的值。13、A市、B市和C市有某种机器10台、10台、8台,现在决定把这些机器支援给D市18台,E市10台。已知:从A市调运一台机器到D市、E市的运费为2
5、00元和800元;从B市调运一台机器到D市、E市的运费为300元和700元;从C市调运一台机器到D市、E市的运费为400元和500元。(1)设从A市、B市各调x台到D市,当28台机器调运完毕后,求总运费W(元)关于x(台)的函数关系式,并求W的最大值和最小值。(2)设从A市调x台到D市,B市调y台到D市,当28台机器调运完毕后,用x、y表示总运费W(元),并求W的最大值和最小值。解 答1根据不等式性质,选B2由=p2-40及p2,设x1,x2为方程两根,那么有x1+x2=-p,x1x2=1又由(x1-x2)2=(x1x2)2-4x1x2,3如图3271,连ED,则又因为DE是ABC两边中点连线
6、,所以故选C4由条件得三式相加得2(a+b+c)=p(a+b+c),所以有p=2或a+bc0当p=2时,y=2x2,则直线通过第一、二、三象限y=-x-1,则直线通过第二、三、四象限 综合上述两种情况,直线一定通过第二、三象限故选B,的可以区间,如图3272 +1,382,383,388,共8个,98=72(个)故选C6如图3273,过A作AGBD于G因为等腰三角形底边上的任意一点到两腰距离的和等于腰上的高,所以PEPF=AG因为AD=12,AB=5,所以BD=13,所 7如图3-274,直线y=-2x+3与抛物线y=x2的交点坐标为A(1,1),B(-3,9)作AA1,BB1分别垂直于x轴,
7、垂足为A1,B1,所以8如图3275,当圆环为3个时,链长为当圆环为50个时,链长为9因为a0,解得故a可取1,3或510如图3276,设经过t小时后,A船、B船分别航行到A1,A1C=|10-x|,B1C=|10-2x|,所以11解法1如图3277,过C作CDCE与EF的延长线交于D因为ABEAEB=90,CEDAEB=90,所以 ABE=CED于是RtABERtCED,所以又ECF=DCF=45,所以CF是DCE的平分线,点F到CE和CD的距离相等,所以所以 解法2 如图3278,作FHCE于H,设FH=h因为ABEAEB90,FEH+AEB=90,所以 ABE=FEH,于是RtEHFRt
8、BAE因为所以12(1)因为抛物线与x轴只有一个交点,所以一元二次方程有两个相等的实根,于是 (2)由(1)知,a2=a1,反复利用此式可得a4=(a1)2=a22a+1=3a+2,a8=(3a2)2=9a212a4=21a13,a16=(21a+13)2=441a2546a169987a610,a18(987a610)(a1)987a21597a610=2584a1597又因为a2-a-1=0,所以64a2-64a-65=-1,即(8a+5)(8a-13)=-1所以a18323a6=2584a1597323(-8a13)=579613(1)由题设知,A市、B市、C市发往D市的机器台数分别为x
9、,x,18-2x,发往E市的机器台数分别为10-x,10-x,2x-10于是W=200x300x+400(18-2x)800(10-x)+700(10-x)+500(2x-10) =-800x17200W=-800x17200(5x9,x是整数) 由上式可知,W是随着x的增加而减少的,所以当x=9时,W取到最小值10000元;当x=5时,W取到最大值13200元(2)由题设知,A市、B市、C市发往D市的机器台数分别为x,y,18-x-y,发往E市的机器台数分别为10-x,10-y,xy-10于是W=200x+800(10-x)+300y700(10-y)+400(18-x-y)+500(x+y
10、-10) =-500x-300y+17200W=-500x-300y+17200,且W=-200x-300(x+y)+17200 -20010-3001817200=9800当x=10,y=8时,W=9800,所以W的最小值为9800又W=-200x-300(xy)17200 -2000-30010+17200=14200,当x=0,y=10时,W=14200,所以W的最大值为142001999年全国初中数学竞赛试卷 一、选择题(本题共6小题,每小题5分,满分30分每小题均给出了代号为A,B, C,D的四个结论,其中只有一个是正确的请将正确答案的代号填在题后的括号里) 1一个凸n边形的内角和小
11、于1999,那么n的最大值是( ) A11 B12 C13 D14 2某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费( ) A60元 B66元 C75元 D78元 3已知,那么代数式的值为( ) A B C D 4在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是( ) A30 B36 C72 D125 5如果抛物线与x轴的交点为A,B,项点为C,那么三角形ABC的面积的最小值
12、是( ) A1 B2 C3 D4 6在正五边形ABCDE所在的平面内能找到点P,使得PCD与BCD的面积相等,并且ABP为等腰三角形,这样的不同的点P的个数为( ) A2 B3 C4 D5 二、填空题(本题共6小题,每小题5分,满分30分) 7已知,那么x2 + y2的值为 8如图1,正方形ABCD的边长为10cm,点E在边CB的延长线上,且EB=10cm,点P在边DC上运动,EP与AB的交点为F设DP=xcm,EFB与四边形AFPD的面积和为ycm2,那么,y与x之间的函数关系式是 (0x10) 9已知ab0,a2 + ab2b2 = 0,那么的值为 10如图2,已知边长为1的正方形OABC
13、在直角坐标系中,A,B两点在第象限内,OA与x轴的夹角为30,那么点B的坐标是 11设有一个边长为1的正三角形,记作A1(如图3),将A1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图4);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图5);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长是 12江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等如果用两 台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完如果要在10分钟内抽完水,那么至少需要抽水机 台 三、解答题(本题共3小
14、题,每小题20分,满分60分) 13设实数s,t分别满足19s2 + 99s + 1 = 0,t2 + 99t + 19 = 0,并且st1,求的值 14如图6,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长 15有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法)每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3例如,30可以这样得到: (1)(10分)证明:可以得到22; (2)(10分)证明:可以得到2100 + 2972 1999年全国初中数学竞
15、赛答案 一、1C 2B 3D 4B 5A 6D 二、710 8y = 5x + 50 9 10 11126 三、13解:s0,第一个等式可以变形为: 又st1, ,t是一元二次方程x2 + 99x + 19 = 0的两个不同的实根,于是,有 即st + 1 =99s,t = 19s 14解:设圆心为O,连接BO并延长交AD于H AB=BD,O是圆心, BHAD 又ADC=90, BHCD 从而OPBCPD , CD=1 于是AD= 又OH=CD=,于是 AB=, BC= 所以,四边形ABCD的周长为 15证明: (1) 也可以倒过来考虑: (或者) (2) 或倒过来考虑: 注意:加法与乘法必须
16、是交错的,否则不能得分 2000年全国初中数学竞赛试题解答一、选择题(只有一个结论正确)1、设a,b,c的平均数为M,a,b的平均数为N,N,c的平均数为P,若abc,则M与P的大小关系是( )。(A)MP;(B)MP;(C)MP;(D)不确定。答:(B)。M,N,P,MP,abc,即MP0,即MP。2、某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(ba),再前进c千米,则此人离起点的距离S与时间t的关系示意图是( )。答:(C)。因为图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C
17、)正确地表述了题意。3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( )。(A)甲比乙大5岁;(B)甲比乙大10岁;(C)乙比甲大10岁;(D)乙比甲大5岁。答:(A)。由题意知3(甲乙)2510,甲乙5。4、一个一次函数图象与直线y=平行,与x轴、y轴的交点分别为A、B,并且过点(1,25),则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )。(A)4个;(B)5个;(C)6个;(D)7个。答:(B)。在直线AB上,横、纵坐标都是整数的点的坐标是x14N,y255N,(N是整数)在线段AB上这样的点应满足14N0,且255N0,N5,即N1,2,3,4,5
18、。5、设a,b,c分别是ABC的三边的长,且,则它的内角A、B的关系是( )。(A)B2A;(B)B2A;(C)B2A;(D)不确定。答:(B)。由得,延长CB至D,使BDAB,于是CDa+c,在ABC与DAC中,C为公共角,且BC:ACAC:DC,ABCDAC,BACD,BADD,ABCDBAD2D2BAC。6、已知ABC的三边长分别为a,b,c,面积为S,A1B1C1的三边长分别为a1,b1,C1面积为S1,且aa1,bb1,cc1则S与S1的大小关系一定是( )。(A)SS1;(B)SS1;(C)SS1;(D)不确定。答:(D)。分别构造ABC与A1B1C1如下:作ABCA1B1C1,显
展开阅读全文