书签 分享 收藏 举报 版权申诉 / 16
上传文档赚钱

类型初中数学圆的经典测试题(DOC 16页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5575612
  • 上传时间:2023-04-25
  • 格式:DOC
  • 页数:16
  • 大小:709.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《初中数学圆的经典测试题(DOC 16页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    初中数学圆的经典测试题DOC 16页 初中 数学 经典 测试 DOC 16 下载 _其它资料_数学_初中
    资源描述:

    1、初中数学圆的经典测试题一、选择题1如图,在边长为8的菱形ABCD中,DAB=60,以点D为圆心,菱形的高DF为半径画弧,交AD于点E,交CD于点G,则图中阴影部分的面积是 ( )ABCD【答案】C【解析】【分析】由菱形的性质得出AD=AB=8,ADC=120,由三角函数求出菱形的高DF,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积,根据面积公式计算即可【详解】解:四边形ABCD是菱形,DAB=60,AD=AB=8,ADC=18060=120,DF是菱形的高,DFAB,DF=ADsin60=,图中阴影部分的面积=菱形ABCD的面积扇形DEFG的面积=故选:C.【点睛】本题考查了菱形的

    2、性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键2如图,在平面直角坐标系中,点P是以C(,)为圆心,1为半径的C上的一个动点,已知A(1,0),B(1,0),连接PA,PB,则PA2+PB2的最小值是()A6B8C10D12【答案】C【解析】【分析】设点P(x,y),表示出PA2+PB2的值,从而转化为求OP的最值,画出图形后可直观得出OP的最值,代入求解即可【详解】设P(x,y),PA2(x+1)2+y2,PB2(x1)2+y2,PA2+PB22x2+2y2+22(x2+y2)+2,OP2x2+y2,PA2+PB22OP2+2,当点P处于OC与圆的交点上时,OP取

    3、得最值,OP的最小值为COCP312,PA2+PB2最小值为222+210故选:C【点睛】本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大3如图,ABC的外接圆是O,半径AO=5,sinB=,则线段AC的长为( )A1B2C4D5【答案】C【解析】【分析】首先连接CO并延长交O于点D,连接AD,由CD是O的直径,可得CAD=90,又由O的半径是5,sinB=,即可求得答案【详解】解:连接CO并延长交O于点D,连接AD,由CD是O的直径,可得CAD=90,B和D所对的弧都为弧AC,B=D,即sinB=sinD=,半径AO=5,CD=10,AC=4

    4、,故选:C.【点睛】本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.4如图,是的直径,是上一点(、除外),则的度数是( )ABCD【答案】D【解析】【分析】根据平角得出的度数,进而利用圆周角定理得出的度数即可【详解】解:,故选:【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的度数的一半是解答此题的关键5如图,中,为中点,且,分别平分和,交于点,则的最小值为( )A1BCD【答案】D【解析】【分析】根据三角形角平分线的交点是三角形的内心,得到最小时,为三角形内切圆的半径,结合切线长定理得到三角

    5、形为等腰直角三角形,从而得到答案【详解】解: ,分别平分和,交于点,为的内心,最小时,为的内切圆的半径, 过作 垂足分别为 四边形为正方形,为的中点, 由切线长定理得: 四边形为正方形, 故选D【点睛】本题考查的动态问题中的线段的最小值,三角形的内心的性质,等腰直角三角形的性质,锐角三角函数的计算,掌握相关知识点是解题关键6如图所示,AB为O的直径,点C在O上,且OCAB,过点C的弦CD与线段OB相交于点E,满足AEC65,连接AD,则BAD等于()A20B25C30D32.5【答案】A【解析】【分析】连接OD,根据三角形内角和定理和等边对等角求出DOB40,再根据圆周角定理即可求出BAD的度

    6、数【详解】解:连接OD,OCAB,COB90,AEC65,OCE180906525,ODOC,ODCOCD25,DOC1802525130,DOBDOCBOC1309040,由圆周角定理得:BADDOB20,故选:A【点睛】本题考查了圆和三角形的问题,掌握三角形内角和定理、等边对等角、圆周角定理是解题的关键7如图,在中,将绕一逆时针方向旋转得到,点经过的路径为弧,则图中阴影部分的面积为( )ABCD【答案】D【解析】【分析】由旋转的性质可得ACBAED,DAB=40,可得AD=AB=5,SACB=SAED,根据图形可得S阴影=SAED+S扇形ADB-SACB=S扇形ADB,再根据扇形面积公式可

    7、求阴影部分面积【详解】将ABC绕A逆时针方向旋转40得到ADE,ACBAED,DAB=40,AD=AB=5,SACB=SAED,S阴影=SAED+S扇形ADB-SACB=S扇形ADB,S阴影=,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8如图,在中,将绕点按顺时针方向旋转度后得到,此时点在边上,斜边交边于点,则的大小和图中阴影部分的面积分别为( )ABCD【答案】C【解析】试题分析:ABC是直角三角形,ACB=90,A=30,BC=2,B=60,AC=BCcotA=2=2,

    8、AB=2BC=4,EDC是ABC旋转而成,BC=CD=BD=AB=2,B=60,BCD是等边三角形,BCD=60,DCF=30,DFC=90,即DEAC,DEBC,BD=AB=2,DF是ABC的中位线,DF=BC=2=1,CF=AC=2=,S阴影=DFCF=故选C考点:1.旋转的性质2.含30度角的直角三角形9如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )A圆形铁片的半径是4cmB四边形AOBC为正方形C弧AB的长度为4cmD扇形

    9、OAB的面积是4cm2【答案】C【解析】【分析】【详解】解:由题意得:BC,AC分别是O的切线,B,A为切点,OACA,OBBC,又C=90,OA=OB,四边形AOBC是正方形,OA=AC=4,故A,B正确;的长度为:=2,故C错误;S扇形OAB=4,故D正确故选C【点睛】本题考查切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算10如图,点I是RtABC的内心,C90,AC3,BC4,将ACB平移使其顶点C与I重合,两边分别交AB于D、E,则IDE的周长为()A3B4C5D7【答案】C【解析】【分析】连接AI、BI,根据三角形的内心的性质可得CAIBAI,再根据平移的性质得到CAIA

    10、ID,ADDI,同理得到BEEI,即可解答.【详解】连接AI、BI,C90,AC3,BC4,AB5点I为ABC的内心,AI平分CAB,CAIBAI,由平移得:ACDI,CAIAID,BAIAID,ADDI,同理可得:BEEI,DIE的周长DE+DI+EIDE+AD+BEAB5故选C【点睛】此题考查了平移的性质和三角形内心的性质,解题关键在于作出辅助线11如图,AB是O的直径,AC是O的切线,连接OC交O于点D,连接BD,C=40则ABD的度数是( )A30B25C20D15【答案】B【解析】试题分析:AC为切线 OAC=90 C=40 AOC=50OB=OD ABD=ODB ABD+ODB=A

    11、OC=50 ABD=ODB=25.考点:圆的基本性质.12如图,AB是O的直径,弦CDAB于E点,若AD=CD= 则的长为()ABCD【答案】B【解析】【分析】根据垂径定理得到, ,A=30,再利用三角函数求出OD=2,即可利用弧长公式计算解答.【详解】如图:连接OD,AB是O的直径,弦CDAB于E点,AD=CD= , ,A=30,DOE=60,OD=,的长=的长=,故选:B.【点睛】此题考查垂径定理,三角函数,弧长公式,圆周角定理,是一道圆的综合题.13如图,已知圆O的半径为10,ABCD,垂足为P,且ABCD16,则OP的长为()A6B6C8D8【答案】B【解析】【分析】作OMAB于M,O

    12、NCD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长【详解】作OMAB于M,ONCD于N,连接OP,OB,OD,AB=CD=16,BM=DN=8,OM=ON=6,ABCD,DPB=90,OMAB于M,ONCD于N,OMP=ONP=90四边形MONP是矩形,OM=ON,四边形MONP是正方形,OP=故选B【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键14如图,有一圆锥形粮堆,其侧面展开图是半径为6m的半圆,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,

    13、此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程长为()A3mBmCmD4m【答案】C【解析】【分析】【详解】如图,由题意得:AP=3,AB=6, 在圆锥侧面展开图中 故小猫经过的最短距离是故选C.15若正六边形的半径长为4,则它的边长等于( )A4B2CD【答案】A【解析】试题分析:正六边形的中心角为3606=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4故选A考点:正多边形和圆16如图,在圆O中,直径AB平分弦CD于点E,且CD=4,连接AC,OD,若A与DOB互余,则EB的长是( )A2B4CD2【答案】

    14、D【解析】【分析】连接CO,由直径AB平分弦CD及垂径定理知COB=DOB,则A与COB互余,由圆周角定理知A=30,COE=60,则OCE=30,设OE=x,则CO=2x,利用勾股定理即可求出x,再求出BE即可.【详解】连接CO,AB平分CD,COB=DOB,ABCD,CE=DE=2A与DOB互余,A+COB=90,又COB=2A,A=30,COE=60,OCE=30,设OE=x,则CO=2x,CO2=OE2+CE2即(2x)2=x2+(2)2解得x=2,BO=CO=4,BE=CO-OE=2.故选D.【点睛】此题主要考查圆内的综合问题,解题的关键是熟知垂径定理、圆周角定理及勾股定理.17如图

    15、,若干个全等的正五边形排成环状,图中所示的是前3个正五边形,要完成这一圆环还需正五边形的个数为( )A10B9C8D7【答案】D【解析】分析:先根据多边形的内角和公式(n2)180求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360求出完成这一圆环需要的正五边形的个数,然后减去3即可得解详解:五边形的内角和为(52)180=540,正五边形的每一个内角为5405=108,如图,延长正五边形的两边相交于点O,则1=3601083=360324=36,36036=10已经有3个五边形,103=7,即完成这一圆环还需7个五边形 故

    16、选D 点睛:本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形18如图,O的直径CD10cm,AB是O的弦,ABCD,垂足为M,OM:OC3:5,则AB的长为()AcmB8cmC6cmD4cm【答案】B【解析】【分析】由于O的直径CD10cm,则O的半径为5cm,又已知OM:OC3:5,则可以求出OM3,OC5,连接OA,根据勾股定理和垂径定理可求得AB【详解】解:如图所示,连接OAO的直径CD10cm,则O的半径为5cm,即OAOC5,又OM:OC3:5,所以OM3,ABCD,垂足为M,OC过圆心AMBM,在RtAOM中

    17、,AB2AM248故选:B【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.19一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )ABCD1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长【详解】圆锥的底面周长是:;设圆锥的底面半径是r,则2r=解得:r=故选B【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长20如图,圆锥的底面半径为1,母线长为3,则侧面积为()A2B3C6D8【答案】B【解析】【分析】圆锥的侧面积=底面周长母线长2,把相应数值代入即可求解【详解】解:圆锥的侧面积为: 2133,故选:B【点睛】此题考查圆锥的计算,解题关键在于掌握运算公式.

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:初中数学圆的经典测试题(DOC 16页).doc
    链接地址:https://www.163wenku.com/p-5575612.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库