北京市海淀区某中学2020学年高一数学下学期期末考试试题(含解析)(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《北京市海淀区某中学2020学年高一数学下学期期末考试试题(含解析)(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北京市海淀区某中学2020学年高一数学下学期期末考试试题含解析DOC 19页 北京市 海淀区 中学 2020 学年 数学 学期 期末考试 试题 解析 DOC 19 下载 _考试试卷_数学_高中
- 资源描述:
-
1、北京市海淀区北京一零一中学2020学年高一数学下学期期末考试试题(含解析)一、选择题:在每小题列出的四个选项中,选出符合题目要求的一项。1.不等式0的解集是( )A. (,0)(1,+)B. (,0)C. (1,+)D. (0,1)【答案】A【解析】【分析】由题意可得,求解即可.【详解】,解得或,故解集为(,0)(1,+),故选A.【点睛】本题考查了分式不等式的解法,考查了计算能力,属于基础题.2.如图,长方体的体积为,E为棱上的点,且,三棱锥EBCD的体积为,则=( )A. B. C. D. 【答案】D【解析】【分析】分别求出长方体和三棱锥EBCD的体积,即可求出答案.【详解】由题意,则.故
2、选D.【点睛】本题考查了长方体与三棱锥的体积的计算,考查了学生的计算能力,属于基础题.3.如图,在平行六面体中,M,N分别是所在棱的中点,则MN与平面的位置关系是( )A. MN平面B. MN与平面相交C. MN平面D. 无法确定MN与平面的位置关系【答案】C【解析】【分析】取的中点,连结,可证明平面平面,由于平面,可知平面.【详解】取的中点,连结,显然,因为平面,平面,所以平面,平面,又,故平面平面,又因为平面,所以平面.故选C.【点睛】本题考查了直线与平面的位置关系,考查了线面平行、面面平行的证明,属于基础题.4.已知x,yR,且xy0,则( )A. B. C. D. lnx+lny0【答
3、案】A【解析】【分析】结合选项逐个分析,可选出答案.【详解】结合x,yR,且xy0,对选项逐个分析:对于选项A,故A正确;对于选项B,取,则,故B不正确;对于选项C,故C错误;对于选项D,当时,故D不正确.故选A.【点睛】本题考查了不等式的性质,属于基础题.5.等比数列an中,Tn表示前n项的积,若T51,则()A. a11B. a31C. a41D. a51【答案】B【解析】分析:由题意知,由此可知,所以一定有详解 , 故选:B点睛:本题考查数列的性质和应用,解题时要认真审题,仔细解答6.设,为两个平面,则能断定的条件是( )A. 内有无数条直线与平行B. ,平行于同一条直线C. ,垂直于同
4、一条直线D. ,垂直于同一平面【答案】C【解析】【分析】对四个选项逐个分析,可得出答案.【详解】对于选项A,当,相交于直线时,内有无数条直线与平行,即A错误;对于选项B,当,相交于直线时,存在直线满足:既与平行又不在两平面内,该直线平行于,故B错误;对于选项C,设直线AB垂直于,平面,垂足分别A,B,假设与不平行,设其中一个交点为C,则三角形ABC中,显然不可能成立,即假设不成立,故与平行,故C正确;对于选项D,垂直于同一平面,与可能平行也可能相交,故D错误.【点睛】本题考查了面面平行的判断,考查了学生的空间想象能力,属于中档题.7.如图,A,B是半径为1的圆周上的定点,P为圆周上的动点,AP
5、B是锐角,大小为.图中PAB的面积的最大值为( )A. +sin2B. sin+sin2C. +sinD. +cos【答案】B【解析】【分析】由正弦定理可得,则,当点在的中垂线上时,取得最大值,此时的面积最大,求解即可.【详解】在中,由正弦定理可得,则.,当点在的中垂线上时,取得最大值,此时的面积最大.取的中点,过点作的垂线,交圆于点,取圆心为,则(为锐角),.所以的面积最大为.故选B.【点睛】本题考查了三角形的面积的计算、正弦定理的应用,考查了三角函数的化简,考查了计算能力,属于基础题.8.已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,ABC是边长为的正三角形,E,F分别是P
6、A,AB的中点,CEF=90.则球O的体积为( )A. B. C. D. 【答案】D【解析】【分析】计算可知三棱锥PABC的三条侧棱互相垂直,可得球O是以PA为棱的正方体的外接球,球的直径,即可求出球O的体积.【详解】在PAC中,设,因为点E,F分别是PA,AB的中点,所以,在PAC中,在EAC中,整理得,因为ABC是边长为的正三角形,所以,又因为CEF=90,所以,所以, 所以.又因为ABC是边长为的正三角形,所以PA,PB,PC两两垂直,则球O是以PA为棱的正方体的外接球,则球的直径,所以外接球O的体积为.故选D.【点睛】本题考查了三棱锥的外接球,考查了学生的空间想象能力,属于中档题.二、
7、填空题。9.设等差数列的前项和为,若,则的值为_.【答案】6【解析】【分析】由题意可得,求解即可.【详解】因为等差数列前项和为, ,所以由等差数列的通项公式与求和公式可得解得.故答案为-6.【点睛】本题考查了等差数列的通项公式与求和公式,考查了学生的计算能力,属于基础题.10.的内角A,B,C的对边分别为a,b,c.已知bsinA+acosB=0,则B=_.【答案】.【解析】【分析】先根据正弦定理把边化为角,结合角的范围可得.【详解】由正弦定理,得,得,即,故选D【点睛】本题考查利用正弦定理转化三角恒等式,渗透了逻辑推理和数学运算素养采取定理法,利用转化与化归思想解题忽视三角形内角的范围致误,
展开阅读全文