正余弦定理知识点总结及高考考试题型(DOC 13页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《正余弦定理知识点总结及高考考试题型(DOC 13页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正余弦定理知识点总结及高考考试题型DOC 13页 余弦 定理 知识点 总结 高考 考试 题型 DOC 13
- 资源描述:
-
1、三角函数五正、余弦定理一、知识点(一)正弦定理:其中是三角形外接圆半径.变形公式:(1)化边为角: (2)化角为边: (3) (4).3、三角形面积公式:4、正弦定理可解决两类问题:(1)两角和任意一边,求其它两边和一角;(解唯一) (2)两边和其中一边对角,求另一边的对角,进而可求其它的边和角. (解可能不唯一)(二)余弦定理: 由此可得:.注:A是钝角;=A是直角;A是锐角;2、余弦定理可以解决的问题:(1)已知三边,求三个角;(解唯一)(2)已知两边和它们的夹角,求第三边和其他两个角;(解唯一):(3)两边和其中一边对角,求另一边,进而可求其它的边和角.(解可能不唯一)三、正、余弦定理的
2、应用射影定理: 有关三角形内角的几个常用公式解三角形常见的四种类型(1) 已知两角与一边:由及正弦定理,可 求出,再求。(2) 已知两边与其夹角,由,求出,再由余弦定理, 求出角。(3)已知三边,由余弦定理可求出。(4)已知两边及其中一边的对角,由正弦定理,求出另一边的 对角,由,求出,再由求出,而通过909090一解一解一解无解无解一解两解无解无解一解无解 求时,可能出一解,两解或无解的情况,其判断方法,如下表:二、例题讲解(一)求边的问题(2009广东文)已知中,的对边分别为若且,则 ( ) A2 B4 C4 D【答案】 A【解析】由可知,所以,由正弦定理得,故选A(2013新课标高考文科
3、10)已知锐角ABC的内角A,B,C的对边分别为,c=6,则( )A.10B.9C.8D.5【解题指南】由,利用倍角公式求出的值,然后利用正弦定理或余弦定理求得的值.【解析】选D.因为,所以,解得,方法一:因为ABC为锐角三角形,所以,.由正弦定理得,.,.又,所以,.由正弦定理得, ,解得.方法二:由余弦定理,则,解得(2011浙江)在中,角所对的边分.若,则( )A- B C -1 D 1【答案】D【解析】,.9、(2011安徽)在ABC中,a,b,c分别为内角A,B,C所对的边长,a=,b=,求边BC上的高.【解析】:ABC180,所以BCA,又,即,又0A180,所以A60.在ABC中
4、,由正弦定理得,又,所以BA,B45,C75,BC边上的高ADACsinC在锐角ABC中,内角A,B,C的对边分别为a,b,c,且2asinB=b.(1)求角A的大小.(2)若a=6,b+c=8,求ABC的面积.【解题指南】(1)由正弦定理易求角A的大小;(2)根据余弦定理,借助三角形的面积公式求解.【解析】(1)由2asinB=b及正弦定理,得sinA=,因为A是锐角,所以.(2)由余弦定理a2=b2+c2-2bccosA,得b2+c2-bc=36,又b+c=8,所以,由三角形面积公式S=bcsinA,得ABC的面积为.6、(2012重庆理)设的内角的对边分别为,且则_【答案】 【解析】由,
5、由正弦定理得,由余弦定理.4、(2012福建文)在中,已知,则_.【答案】 【解析】由正弦定理得 5、(2011北京)在中,若,则 .【答案】【解析】:由正弦定理得又所以1、在ABC中,角的对边分别为,,,则( ) A、1 B、2 C、 D、2、 在ABC中,分别为的对边.如果成等差数列,30,ABC的面积为,那么( ) A、 B、 C、 D、3、在ABC中,角所对的边长分别为,若120,则( ) A、 B、 C、 D、与的大小关系不能确定5、若ABC的周长等于20,面积是,60,则边的长是( )A、5 B、6C、7D、8 7、三角形的两边分别为5和3,它们夹角的余弦是方程的根,则三角形的另一
6、边长为( ) A、52 B、 C、16 D、411、在中.若b=5,sinA=,则_.12、若ABC的面积为,BC2,C60,则边AB的长度等于 13、如图,在ABC中,若,则 。(二)求角的问题(2013北京高考文科5)在ABC中,a=3,b=5,sinA=,则sinB=( )A. B. C. D.1 【解析】选B。2012天津理)在中,内角,所对的边分别是,已知,则()ABCD【答案】A【解析】由正弦定理得,又,所以,易知(2013湖南高考文科5)在锐角ABC中,角A,B所对的边长分别为a,b. 若2asinB=b,则角A等于( )A. B. C. D.【解题指南】本题先利用正弦定理化简条
7、件等式,注意条件“锐角三角形” . 【解析】选A.由2asinB=b得2sinAsinB=sinB,得sinA=,所以锐角A=.(2013湖南高考理科3)在锐角中,角所对的边长分别为.若( )A B C D【解题指南】本题先利用正弦定理化简条件等式,注意条件“锐角三角形” . 【解析】选D.由2asinB=b得2sinAsinB=sinB,得sinA=,所以锐角A=.(2013天津高考理科6)在ABC中, 则 = ()A. B. C. D. 【解题指南】先由余弦定理求AC边长,然后根据正弦定理求值.【解析】选C. 在ABC中,由余弦定理得,所以由正弦定理得即所以.在ABC中,角A,B,C所对的
8、边分别为a,b,c,已知.(1)求角B的大小;(2)若,求b的取值范围.【解题指南】(1)借助三角形内角和为,结合三角恒等变换将条件中的等式转化为只含B的方程,求出B的三角函数值,进而可求出角B.(2)根据(1)求出的B与,由余弦定理可得b2关于a的函数,注意到可知,进而可求出b的范围.【解析】(1)由已知得,即.因为,所以,又,所以,又,所以.(2)由余弦定理,有,因为,,所以,又因为,所以,即.(2013浙江高考理科T16)在ABC中,C=90,M是BC的中点.若,则sinBAC=.【解题指南】分别在RtABC和ABM中应用勾股定理和正弦定理.【解析】设AC=b,AB=c,BC=a,在AB
展开阅读全文