书签 分享 收藏 举报 版权申诉 / 18
上传文档赚钱

类型材料力学B试题6弯曲变形(DOC 18页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5569502
  • 上传时间:2023-04-25
  • 格式:DOC
  • 页数:18
  • 大小:495KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《材料力学B试题6弯曲变形(DOC 18页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    材料力学B试题6弯曲变形DOC 18页 材料力学 试题 弯曲 变形 DOC 18
    资源描述:

    1、弯曲变形1. 已知梁的弯曲刚度EI为常数,今欲使梁的挠曲线在x=l/3处出现一拐点,则比值Me1/Me2为:(A) Me1/Me2=2; (B) Me1/Me2=3;(C) Me1/Me2=1/2; (D) Me1/Me2=1/3。答:(C)2. 外伸梁受载荷如图示,其挠曲线的大致形状有下列(A)、(B)、(C),(D)四种:答:(B)3. 简支梁受载荷并取坐标系如图示,则弯矩M、剪力FS与分布载荷q之间的关系以及挠曲线近似微分方程为:wxq(x)EI(A); (B); (C); Fll/3eMBCA(D)。答:(B)4. 弯曲刚度为EI的悬臂梁受载荷如图示,自由端的挠度()则截面C处挠度为:

    2、(A)(); (B)();(C)();(D)()。答:(C)5. 画出(a)、(b)、(c)三种梁的挠曲线大致形状。答:6. 试画出图示梁的挠曲线大致形状。答:7. 正方形截面梁分别按(a)、(b)两种形式放置,则两者间的弯曲刚度关系为下列中的哪一种:(A) (a)(b); (B) (a)(b);(C) (a)=(b); (D) 不一定。答:(C)8. 试写出图示等截面梁的位移边界条件,并定性地画出梁的挠曲线大致形状。答:x=0, w1=0, =0;x=2a,w2=0,w3=0;x=a,w1=w2;x=2a,。9. 试画出图示静定组合梁在集中力F作用下挠曲线的大致形状。 答:10. 画出图示各

    3、梁的挠曲线大致形状。答:11. 作图示外伸梁的弯矩图及其挠曲线的大致形状。答:12. 弯曲刚度为EI的等截面外伸梁如图示。当梁内任一纵向层总长度均不因其自重引起的弯曲而有所改变时,证明两支座间的距离应为l-2a=0.577l。证: 令外伸端长度为a,内跨长度为2b,因对称性,由题意有: 得 a3 + 3a2b -2b3 = 0 a3 + a2b + 2a2b -2b3 = 0 a2 + 2ba -2b2 = 0 a = 0.211l 即 l -2a = 0.577l 证毕。13. 等截面悬臂梁弯曲刚度EI为已知,梁下有一曲面,方程为w = -Ax3。欲使梁变形后与该曲面密合(曲面不受力),试求

    4、梁的自由端处应施加的载荷。解: FS(x) = -6EIA x=l, M = -6EIAlF=6EIA(),Me=6EIAl()14. 变截面悬臂梁受均布载荷q作用,已知q、梁长l及弹性模量E。试求截面A的挠度wA和截面C的转角C。解:由边界条件得 () , ()15. 在刚性圆柱上放置一长2R、宽b、厚h的钢板,已知钢板的弹性模量为E。试确定在铅垂载荷q作用下,钢板不与圆柱接触部分的长度l及其中之最大应力。解:钢板与圆柱接触处有 故 16. 弯曲刚度为EI的悬臂梁受载荷如图示,试用积分法求梁的最大挠度及其挠曲线方程。解: ()17. 图示梁的左端可以自由上下移动,但不能左右移动及转动。试用积

    5、分法求力F作用处点A下降的位移。解: ()18. 简支梁上自A至B的分布载荷q(x)=-Kx2,K为常数。试求挠曲线方程。解: 二次积分 x=0, M=0, B=0 x=l, M=0, x=0, w=0, D=0 x=l, w=0, ()19. 弯曲刚度为EI的悬臂梁原有微小初曲率,其方程为y=Kx3。现在梁B端作用一集中力,如图示。当F力逐渐增加时,梁缓慢向下变形,靠近固定端的一段梁将与刚性水平面接触。若作用力为F,试求:(1)梁与水平面的接触长度;(2)梁B端与水平面的垂直距离。解:(1) 受力前C处曲率,弯矩M(a)1 = 0 受力后C处曲率,弯矩M(a)2 = -F (l - a)(2

    6、) 同理, 受力前x1截面处 受力后x1截面处 积分二次 C=0, D=020. 图示弯曲刚度为EI的两端固定梁,其挠度方程为式中A、B、C、D为积分常数。试根据边界条件确定常数A、B、C、D,并绘制梁的剪力FS、弯矩M图。解:x = 0,w = 0,D = 0 代入方程 21. 已知承受均布载荷q0的简支梁中点挠度为,则图示受三角形分布载荷作用梁中点C的挠度为wC= 。答:()22. 试用叠加法计算图示梁A点的挠度wA。解:()23. 试求图示梁BC段中点的挠度。解:()24. 已知梁的弯曲刚度EI。试用叠加法求图示梁截面C的挠度wC。解: ()25. 已知梁的弯曲刚度EI为常数。试用叠加法

    7、求图示梁B截面的挠度和转角。解: () ()26. 试用叠加法求图示简支梁跨度中点C的挠度。解: ()27. 试用叠加法求图示简支梁集中载荷作用点C的挠度。解: ()28. 已知简支梁在均布载荷作用下跨中的挠度为,用叠加法求图示梁中点C的挠度。解: ()29. 弯曲刚度为EI的悬臂梁受载荷如图示,试用叠加法求A端的转角A。解: ()30. 弯曲刚度为EI的等截面梁受载荷如图示,试用叠加法计算截面C的挠度wC。解:()31. 如图所示两个转子,重量分别为P1和P2,安装在刚度分别为EI1及EI2的两个轴上,支承轴是A、B、C、D四个轴承。B、C两轴承靠得极近以便于用轴套将此两轴连接在一起。如果四

    8、个轴承的高度相同,两根轴在B、C处连接时将出现“蹩劲”现象。为消除此现象可将A处轴承抬高,试求抬高的高度。解: , 点A抬高的高度为 32. 图示梁AB的左端固定,而右端铰支。梁的横截面高度为h,弯曲刚度为EI,线膨胀系数为,若梁在安装后,顶面温度为t1,底面温度为t2(t2t1),试求此梁的约束力。解:因温度变化而弯曲的挠曲线微分方程为 由A处边界条件得 而 33. 图示温度继电器中两种金属片粘结的组合梁,左端固定,右端自由。两种材料的弹性模量分别为E1与E2。线膨胀系数分别为与,并且。试求温度升高t时在B端引起的挠度。解:,梁上凸下凹弯曲 平衡条件 FN1 = FN2 = FN M1 +

    9、M2 = FNh 变形协调 1 =2, 1 =2,即1N +1M +1t =2N +2M +2t 得 其中 A1 = A2 = bh,I1 = I2 = 则 FN1 = FN2 = M1 = M2 = 故 34. 单位长度重量为q,弯曲刚度为EI的均匀钢条放置在刚性平面上,钢条的一端伸出水平面一小段CD,若伸出段的长度为a,试求钢条抬高水平面BC段的长度b。解: 35. 图示将厚为h = 3 mm的带钢围卷在半径R = 1.2 m的刚性圆弧上,试求此时带钢所产生的最大弯曲正应力。已知钢的弹性模量E = 210 GPa,屈服极限= 280 MPa,为避免带钢产生塑性变形,圆弧面的半径R应不小于多

    10、少?解:MPa, , R = 1.12 m36. 一悬臂梁受分布载荷作用如图示,荷载集度,试用叠加原理求自由端处截面B的挠度wB,梁弯曲刚度EI为常量。解: ()37. 试用叠加法求图示简支梁跨中截面C的挠度wC值,梁弯曲刚度EI为常量。解: ()38. 试求图示超静定梁截面C的挠度wC值,梁弯曲刚度EI为常量。解: 取悬臂梁为基本系统,wB = 0 , () ()39. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解:取悬臂梁为基本系统,wB = 0(),(),()40. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解: 去C支座,取简支梁AB为基本系统 ,() (),()4

    11、1. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解: 去C支座,取简支梁AB为基本系统 ,() (),()42. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解:去C支座,取简支梁AB为基本系统 wC = 0,(),() 利用对称性取C端固定,以AC段悬梁比拟作基本系统,wA = 0 ,()43. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解:去C支座,取简支梁AB为基本系统 () () wC = 0,()()另解:因对称性,取C处固定的AC悬臂梁为基本系统,wA = 0 ,(),()44. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解:去A支座,以外伸梁

    12、为基本系统,wA = 0 (),(),()45. 试求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解:因反对称,wC = 0 取AC段悬臂梁为基本系统,C处只有反对称内力FSC (),() (),()46. 图示超静定梁A端固定,B端固结于可沿铅垂方向作微小移动,但不可转动的定向支座上。梁弯曲刚度EI为常量,试求挠度wB值。解:去B支座,以悬臂梁AB为基本系统,B = 0 () ()47. 图示超静定梁AB两端固定,弯曲刚度为EI,试求支座B下沉后,梁支座B处约束力。解: 取悬臂梁AB为基本系统,wB =,B = 0 () ()另解:由挠曲线反对称,内力一定是反对称,且l/2处有拐点,此处

    13、M = 0,挠度 , () (),()48. 图示超静定梁AB两端固定,弯曲刚度为EI,试求支座B转动角后,梁支座的约束力。解:取悬臂梁AB为基本系统,wB = 0,B = () ()另解:取简支梁AB为基本系统,A = 0,B = () ()49. 图示悬臂梁自由端B处与45光滑斜面接触,设梁材料弹性模量E、横截面积A、惯性矩I及线膨胀系数l已知,当温度升高T,试求梁内最大弯矩Mmax。解:取AB悬臂梁为基本系统 变形协调关系 即 且 N = FB , 50. 试用积分法求图示超静定梁支座约束力值,梁弯曲刚度EI为常量。解: x = 0,A = 0,C = 0 x = 0,wA = 0,D = 0 联立求解得 (),() (),()51. 梁挠曲线近似微分方程为,其近似性是 ,和 。答:;略去剪力对位移的影响。52. 应用叠加原理求梁的变形及位移应满足的条件是 ,和 。答:线弹性;小变形。53. 梁变形中挠度和转角之间的关系为 。答:54. 等截面纯弯曲梁变形的挠曲线为 曲线,其曲率与外力偶矩间关系为 。答:圆;。55. 图示简支梁跨中截面C的挠曲线曲率半径为 。答:56. 一超静定梁受载荷如图示,当梁长l增加一倍,其余不变,则跨中挠度wC增大 倍。答:15。92

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:材料力学B试题6弯曲变形(DOC 18页).doc
    链接地址:https://www.163wenku.com/p-5569502.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库