书签 分享 收藏 举报 版权申诉 / 7
上传文档赚钱

类型北京市东城区高一数学上学期期末考试试卷(DOC 7页).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5562323
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:7
  • 大小:351.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《北京市东城区高一数学上学期期末考试试卷(DOC 7页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    北京市东城区高一数学上学期期末考试试卷DOC 7页 北京市 东城区 数学 学期 期末考试 试卷 DOC 下载 _考试试卷_数学_高中
    资源描述:

    1、北京市东城区2014-2015学年高一数学上学期期末考试试卷一、选择题:共10小题,每小题3分,共30分。在每小题给出的四个选项中,选出符合题目要求的一项。1. 若集合,则A. B. C. D. 2. 已知,则角是A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3. 下列函数中,在区间上为增函数的是A. B. C. D. 4. 152sin15cos15的值为A. B. C. D. 5. 若函数,且)的图象如图所示,则下列函数图象正确的是6. 设,则A. B. C. D. 7. 为了得到函数的图象,可以将函数的图象A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D.

    2、 向左平移个单位8. 设函数,若,且,则A. B. C. D. 9. 已知函数,则的值为A. 5B. 1C. 3D. 410. 以A表示值域为R的函数组成的集合,B表示具有如下性质的函数组成的集合:对于函数,存在一个正数M,使得函数的值域包含于区间。例如,当时,。现有如下结论:设函数的定义域为D,若对于任何实数b,存在,使得,则;若函数,则有最大值和最小值;若函数,的定义域相同,且,则;若函数有最大值,则。其中正确的是A. B. C. D. 二、填空题:本大题共6小题,每小题4分,共24分。11. 已知全集,集合,那么_。12. 已知,则的值是_。13. 求值:_。14. 若,则_。15. 函

    3、数的单调递减区间是_。16. 对于任意两个实数,定义若,则的最小值为_。三、解答题:本大题共5个小题,共46分,解答应写出文字说明,证明过程或演算步骤。17.(本题满分10分)已知集合,且,求实数m的值组成的集合。18.(本题满分10分)已知函数。()求的最小正周期;()求在区间上的最大值和最小值。19.(本题满分9分)已知函数,其中e是自然对数的底数。()证明:是R上的偶函数;()判断在上的单调性,并证明。20.(本题满分9分)如图,半径为4m的水轮绕着圆心O做匀速圆周运动,水轮每分钟旋转4圈,水轮圆心O距离水面2m,如果当水轮上的点P从离开水面的时刻(P0)起开始计算时间。()求点P到水面

    4、的距离与时间满足的函数关系;()求点P第一次到达最高点需要的时间。21.(本题满分8分)已知函数。()若函数的图象与x轴无交点,求a的取值范围;()若函数在上存在零点,求a的取值范围;()设函数。当时,若对任意的,总存在,使得,求b的取值范围。【试题答案】三、解答题:本大题共5个小题,共46分。19.(本题满分9分)解:()因为函数的定义域是R,且,所以是偶函数。3分()在上是单调递增函数。设,则。由,得,所以。又由得,所以,所以。所以,即。所以,在上是单调递增函数。9分20.(本题满分9分)()由于最高点距离水面的距离为6,所以。所以1。所以。所以。所以当时,即时,点P第一次达到最高点。9分7

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:北京市东城区高一数学上学期期末考试试卷(DOC 7页).doc
    链接地址:https://www.163wenku.com/p-5562323.html
    2023DOC
         内容提供者      个人认证 实名认证

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库