书签 分享 收藏 举报 版权申诉 / 26
上传文档赚钱

类型2020年内蒙古通辽市中考数学试卷-(解析版).doc

  • 上传人(卖家):2023DOC
  • 文档编号:5556969
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:26
  • 大小:886.50KB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2020年内蒙古通辽市中考数学试卷-(解析版).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2020 年内 蒙古 通辽市 中考 数学试卷 解析 下载 _模拟试题_中考复习_数学_初中
    资源描述:

    1、2020年内蒙古通辽市中考数学试卷一、选择题(共10小题).12020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是()A0.3105B3104C30103D3万2下列说法不正确的是()A2a是2个数a的和B2a是2和数a的积C2a是单项式D2a是偶数3下列事件中是不可能事件的是()A守株待兔B瓮中捉鳖C水中捞月D百步穿杨4如图,将一副三角尺按下列位置摆放,使和互余的摆放方式是()ABCD5关于x的方程kx26x+90有实数根,k的取值范围是()Ak1且k0Bk1Ck1且k0Dk16根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是()ABCD7如图,PA,PB分别与

    2、O相切于A,B两点,P72,则C()A108B72C54D368如图,AD是ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断ADCE是菱形的是()ABAC90BDAE90CABACDABAE9如图,OC交双曲线y于点A,且OC:OA5:3,若矩形ABCD的面积是8,且ABx轴,则k的值是()A18B50C12D10从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解ax2aa(x+1)(x1);(3)棱长是1cm的正方体的表面展开图的周长一定是14cm;(4)弧长是20cm,面积是240cm2的扇形的圆心角是120ABCD1二、填空题(本题包括7

    3、小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11计算:(1)(3.14)0 ;(2)2cos45 ;(3)12 12若数据3,a,3,5,3的平均数是3,则这组数据中(1)众数是 ;(2)a的值是 ;(3)方差是 13如图,点O在直线AB上,AOC581728则BOC的度数是 14如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,按这样的方法拼成的第(n+1)个正方形比第n个正方形多 个小正方形15有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了 个人16如图,在ABC中,ACB90

    4、,ACBC,点P在斜边AB上,以PC为直角边作等腰直角三角形PCQ,PCQ90,则PA2,PB2,PC2三者之间的数量关系是 17如图,在ABC中,ABAC,BAC120,点E是边AB的中点,点P是边BC上一动点,设PCx,PA+PEy图是y关于x的函数图象,其中H是图象上的最低点那么a+b的值为 三、解答题(包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18解方程:19从A处看一栋楼顶部的仰角为,看这栋楼底部的俯角为,A处与楼的水平距离AD为90m若tan0.27,tan2.73,求这栋楼高20用定义一种新运算:对于任意实数m和n

    5、,规定mnm2nmn3m,如:1212212326(1)求(2);(2)若3m6,求m的取值范围,并在所给的数轴上表示出解集21甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7从三个口袋各随机取出1个小球用画树状图或列表法求:(1)取出的3个小球上恰好有一个偶数的概率;(2)取出的3个小球上全是奇数的概率22如图,O的直径AB交弦(不是直径)CD于点P,且PC2PBPA,求证:ABCD23某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面调查了若干名学生的兴趣爱

    6、好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,共调查了多少名学生;(2)补全条形统计图;(3)若该校爱好运动的学生共有800名,则该校学生总数大约有多少名24某服装专卖店计划购进A,B两种型号的精品服装已知2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元(1)求A,B型服装的单价;(2)专卖店要购进A,B两种型号服装60件,其中A型件数不少于B型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?25中心为O的正六边形ABCDEF的半轻为6cm,点P,Q同时分别从A,D两点出发,以1cm

    7、/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s)(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比26如图,在平面直角坐标系中,抛物线yx2+bx+c与x轴交于点A,B,与y轴交于点C且直线yx6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N(1)求抛物线的函数解析式;(2)当MDB的面积最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若

    8、不存在,说明理由参考答案一、选择题(本题包括10小题,每小题3分,共30分,每小题只有一个正确答齐案,请在答题卡上将代表正确答案的字母用2B铅笔涂黑)12020年我市初三毕业生超过30000人,将30000用科学记数法表示正确的是()A0.3105B3104C30103D3万【分析】根据科学记数法定义:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,即可表示解:30000用科学记数法表示为:3104故选:B2下列说法不正确的是()A2a是2个数a的和B2a是2和数a的积C2a是单项式D2a是偶数【分析】分别根据乘法的定义,单项式的定义以

    9、及偶数的定义逐一判断即可解:A.2aa+a,即2a是2个数a的和,说法正确;B.2a是2和数a的积,说法正确;C.2a是单项式,说法正确;D.2a不一定是偶数,故原说法错误故选:D3下列事件中是不可能事件的是()A守株待兔B瓮中捉鳖C水中捞月D百步穿杨【分析】不可能事件是指在一定条件下,一定不发生的事件,可得答案解:A、守株待兔是随机事件,故此选项不合题意;B、瓮中捉鳖是必然事件,故此选项不合题意;C、水中捞月是不可能事件,故此选项符合题意;D、百步穿杨是随机事件,故此选项不合题意;故选:C4如图,将一副三角尺按下列位置摆放,使和互余的摆放方式是()ABCD【分析】根据余角和补角的概念、结合图

    10、形进行判断即可解:A与互余,故本选项正确;B,故本选项错误;C,故本选项错误;D与互补,故本选项错误,故选:A5关于x的方程kx26x+90有实数根,k的取值范围是()Ak1且k0Bk1Ck1且k0Dk1【分析】若一元二次方程有有实数根,则根的判别式b24ac0,建立关于k的不等式,求出k的取值范围解:k0时,是一元一次方程,有实数根;k不等于0时,是一元二次方程,根据题意,0,b24ac(6)24k90,解得k1,故选:D6根据圆规作图的痕迹,可用直尺成功地找到三角形内心的是()ABCD【分析】利用基本作图和三角形内心的定义进行判断解:三角形内心为三角形内角平分线的交点,选项B中作了两个交的

    11、平分线故选:B7如图,PA,PB分别与O相切于A,B两点,P72,则C()A108B72C54D36【分析】连接OA、OB,根据切线的性质得到PAO90,PBO90,求出AOB,根据圆周角定理解答即可解:连接OA、OB,PA,PB分别为O的切线,OAPA,OBPB,PAO90,PBO90,AOB360PAOPBOP360909072108,由圆周角定理得,CAOB54,故选:C8如图,AD是ABC的中线,四边形ADCE是平行四边形,增加下列条件,能判断ADCE是菱形的是()ABAC90BDAE90CABACDABAE【分析】根据菱形的判定定理即可得到结论解:添加BAC90时,AD是ABC的中线

    12、,ADBCCD,四边形ADCE是菱形,选项A正确;添加DAE90,四边形ADCE是平行四边形四边形ADCE是矩形,选项B错误;添加ABAC,可得到ADBC,ADC90,四边形ADCE是平行四边形是矩形,选项C错误;添加ABAE,四边形ADCE是平行四边形,AECD,AD是ABC的中线,BDCDAE,ABBD,故不能选项D不能判定四边形ADCE是菱形;故选:A9如图,OC交双曲线y于点A,且OC:OA5:3,若矩形ABCD的面积是8,且ABx轴,则k的值是()A18B50C12D【分析】延长DA、CB,交x轴于E、F,通过证得三角形相似求得AOE的面积9,根据反比例函数系数k的几何意义,即可求得

    13、k的值解:延长DA、CB,交x轴于E、F,四边形ABCD矩形,且ABx轴,DEx轴,CFx轴,AECF,AOECOF,()2,矩形ABCD的面积是8,ABC的面积为4,ABx轴,ABCOFC,()2,OC:OA5:3,SOFC25,SAOE9,双曲线y经过点A,SAOE|k|9,k0,k18,故选:A10从下列命题中,随机抽取一个是真命题的概率是()(1)无理数都是无限小数;(2)因式分解ax2aa(x+1)(x1);(3)棱长是1cm的正方体的表面展开图的周长一定是14cm;(4)弧长是20cm,面积是240cm2的扇形的圆心角是120ABCD1【分析】根据各个小题中的说法可以判断是否为真命

    14、题,从而可以得到随机抽取一个是真命题的概率解:(1)无理数都是无限小数是真命题,(2)因式分解ax2aa(x+1)(x1)是真命题;(3)棱长是1cm的正方体的表面展开图的周长一定是14cm是真命题;(4)弧长是20cm,面积是240cm2的扇形的半径是24022024cm,圆心角为:150,故弧长是20cm,面积是240cm2的扇形的圆心角是120是假命题;故随机抽取一个是真命题的概率是,故选:C二、填空题(本题包括7小题,每小题3分,共21分,将答案直接填在答题卡对应题的横线上)11计算:(1)(3.14)01;(2)2cos45;(3)121【分析】(1)根据任何非零数的零次幂等于1即可

    15、;(2)根据特殊角的三角函数值计算即可;(3)根据有理数的乘方的定义计算即可解:(1)(3.14)01;(2)2cos45;(3)12111故答案为:(1)1;(2);(3)112若数据3,a,3,5,3的平均数是3,则这组数据中(1)众数是3;(2)a的值是1;(3)方差是【分析】根据平均数、中位数、方差、众数的意义和计算方法进行计算即可解:(1)不论a取何值,出现次数最多的是3,出现3次,因此众数是3;(2)(33+a+5)35,解得,a1,(3)S2(13)2+(53)2,故答案为:3,1,13如图,点O在直线AB上,AOC581728则BOC的度数是1214232【分析】依据邻补角的定

    16、义,即可得到BOC的度数解:点O在直线AB上,且AOC581728,BOC180AOC1805817281214232,故答案为:121423214如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形,按这样的方法拼成的第(n+1)个正方形比第n个正方形多2n+3个小正方形【分析】观察不难发现,所需要的小正方形的个数都是平方数,然后根据相应的序数与正方形的个数的关系找出规律解答即可解:第1个正方形需要4个小正方形,422,第2个正方形需要9个小正方形,932,第3个正方形需要16个小正方形,1642,第n+1个正方形有(n+1+1)2个小正方形,

    17、第n个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n个正方形多(n+2)2(n+1)22n+3个小正方形故答案为:2n+315有一个人患了新冠肺炎,经过两轮传染后共有169人患了新冠肺炎,每轮传染中平均一个人传染了12个人【分析】根据增长率问题:增长率增长数量/原数量100%如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即 原数(1+增长百分率)2后来数解:设每轮传染中平均一个人传染了x个人,根据题意,得(1+x)21691+x13x112,x214(舍去)答:每轮传染中平均一个人传染了12个人故答案为:1216如图,在ABC

    18、中,ACB90,ACBC,点P在斜边AB上,以PC为直角边作等腰直角三角形PCQ,PCQ90,则PA2,PB2,PC2三者之间的数量关系是PB2+AP22CP2【分析】连接BQ,由“SAS”可证ACPBCQ,可得CAPCBQ45,可得ABQ90,由勾股定理可得PB2+BQ2PQ2,即可求解解:如图,连接BQ,ACB90,ACBC,CABCBA45,PCQ是等腰直角三角形,PCCQ,PCQ90ACB,PQ22CP2,ACPBCQ,又ACBC,ACPBCQ(SAS),CAPCBQ45,ABQ90,PB2+BQ2PQ2,PB2+AP22CP2,故答案为:PB2+AP22CP217如图,在ABC中,A

    19、BAC,BAC120,点E是边AB的中点,点P是边BC上一动点,设PCx,PA+PEy图是y关于x的函数图象,其中H是图象上的最低点那么a+b的值为3+2【分析】点A关于BC的对称点为点A,连接AE交BC于点P,此时y最小,进而求解解:如图,将ABC沿BC折叠得到ABC,则四边形ABAC为菱形,菱形的对角线交于点O,设菱形的边长为2m,在ABC中,BC2BO2ACsinOAC4msin602m,从图看,BC32m,解得:m;点A关于BC的对称点为点A,连接AE交BC于点P,此时y最小,ABAC,BAC120,则BAA60,故AAB为等边三角形,E是AB的中点,故AEAB,而ABAC,故PAC为

    20、直角,则aPCm,此时bAA2m,则a+b2m+m3+2故答案为3+2三、解答题(包括9小题,共69分,每小题分值均在各题号后面标出,请在答题卡上写出各题解答的文字说明、证明过程或计算步骤)18解方程:【分析】方程两边都乘以最简公分母x(x2)把分式方程化为整式方程,然后解整式方程,再进行检验解:方程两边都乘以x(x2)得,2x3x6,解得x6,检验:当x6时,x(x2)64240,所以x6是分式方程的解因此,原分式方程的解是x619从A处看一栋楼顶部的仰角为,看这栋楼底部的俯角为,A处与楼的水平距离AD为90m若tan0.27,tan2.73,求这栋楼高【分析】在两个直角三角形中,利用边角关

    21、系求出BD、CD的长,即可求楼高BC解:在RtABD中,BDtanAD0.279024.3(米),在RtACD中,CDADtan902.73245.7(米),BCBD+CD24.3+245.7270(米),答:这栋楼高BC约为270米20用定义一种新运算:对于任意实数m和n,规定mnm2nmn3m,如:1212212326(1)求(2);(2)若3m6,求m的取值范围,并在所给的数轴上表示出解集【分析】(1)根据新定义规定的运算法则列式,再由有理数的运算法则计算可得;(2)根据新定义列出关于x的不等式,解不等式即可得解:(1)(2)(2)2(2)34+233;(2)3m6,则32m3m3m6,

    22、解得:m2,将解集表示在数轴上如下:21甲口袋中装有2个相同小球,它们分别写有数字1,2;乙口袋中装有3个相同小球,它们分别写有数字3,4,5;丙口袋中装有2个相同小球,它们分别写有数字6,7从三个口袋各随机取出1个小球用画树状图或列表法求:(1)取出的3个小球上恰好有一个偶数的概率;(2)取出的3个小球上全是奇数的概率【分析】(1)画树状图展示所有12种等可能的结果,找出取出的3个小球上恰好有一个偶数的结果数,然后根据概率公式计算;(2)找出取出的3个小球上全是奇数的结果数,然后根据概率公式计算解:(1)画树状图为:共有12种等可能的结果,其中取出的3个小球上恰好有一个偶数的结果数为5,所以

    23、取出的3个小球上恰好有一个偶数的概率;(2)取出的3个小球上全是奇数的结果数为2,所以取出的3个小球上全是奇数的概率22如图,O的直径AB交弦(不是直径)CD于点P,且PC2PBPA,求证:ABCD【分析】连接AC、BC,如图,根据圆周角定理得到AD,CB,则可判断APCBPD,利用相似比得到PCPDPAPB,利用PC2PBPA得到PCPD,然后根据垂径定理得到结论【解答】证明:连接AC、BC,如图,AD,CB,APCBPD,PC:PBPA:PD,PCPDPAPB,PC2PBPA,PCPD,AB为直径,ABCD23某校研究学生的课余爱好情况,采取抽样调查的方法,从阅读、运动、娱乐、上网四个方面

    24、调查了若干名学生的兴趣爱好,并将调查结果绘制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中,共调查了多少名学生;(2)补全条形统计图;(3)若该校爱好运动的学生共有800名,则该校学生总数大约有多少名【分析】(1)根据爱好运动的人数和所占的百分比,可以求得本次调查的人数;(2)根据(1)中的结果和统计图中的数据,可以得到爱好阅读和上网的人数,从而可以将条形统计图补充完整;(3)根据爱好运动的学生所占的百分比,可以计算出该校学生总数大约有多少名解:(1)4040%100(名),即在这次调查中,共调查了100名学生;(2)爱好上网的学生有:10010%10(

    25、名),爱好阅读的学生有:10040201030(名),补全的条形统计图如右图所示;(3)80040%2000(名),答:该校学生总数大约有2000名24某服装专卖店计划购进A,B两种型号的精品服装已知2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元(1)求A,B型服装的单价;(2)专卖店要购进A,B两种型号服装60件,其中A型件数不少于B型件数的2倍,如果B型打七五折,那么该专卖店至少需要准备多少货款?【分析】(1)设A型服装的单价为x元,B型服装的单价为y元,根据“2件A型服装和3件B型服装共需4600元;1件A型服装和2件B型服装共需2800元”,即可得出

    26、关于x,y的二元一次方程组,解之即可得出结论;(2)设购进B型服装m件,则购进A型服装(60m)件,根据购进A型件数不少于B型件数的2倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,设该专卖店需要准备w元的货款,根据总价单价数量,即可得出w关于m的函数关系式,再利用一次函数的性质即可解决最值问题解:(1)设A型服装的单价为x元,B型服装的单价为y元,依题意,得:,解得:答:A型服装的单价为800元,B型服装的单价为1000元(2)设购进B型服装m件,则购进A型服装(60m)件,依题意,得:60m2m,解得:m20设该专卖店需要准备w元的货款,则w800(60m)+10000.75

    27、m50m+48000,k50,w随m的增大而减小,当m20时,w取得最小值,最小值5020+4800047000答:该专卖店至少需要准备47000元货款25中心为O的正六边形ABCDEF的半轻为6cm,点P,Q同时分别从A,D两点出发,以1cm/s的速度沿AF,DC向终点F,C运动,连接PB,PE,QB,QE,设运动时间为t(s)(1)求证:四边形PBQE为平行四边形;(2)求矩形PBQE的面积与正六边形ABCDEF的面积之比【分析】(1)证明ABPDEQ(SAS),可得BPEQ,同理PEBQ,由此即可证明;(2)求出t0s或6s时,四边形PBQE是矩形,求出矩形面积和正六边形面积,即可得出结

    28、论【解答】(1)证明:正六边形ABCDEF内接于O,ABBCCDDEEFFA,AABCCDDEFF,点P,Q同时分别从A,D两点出发,以1cm/s速度沿AF,DC向终点F,C运动,APDQt,PFQC6t,在ABP和DEQ中,ABPDEQ(SAS),BPEQ,同理可证PEQB,四边形PEQB为平行四边形(2)解:连接BE、OA,则AOB60,OAOB,AOB是等边三角形,ABOA6,BE2OB12,当t0时,点P与A重合,Q与D重合,四边形PBQE即为四边形ABDE,如图1所示:则EAFAEF30,BAE1203090,此时四边形ABDE是矩形,即四边形PBQE是矩形当t6时,点P与F重合,Q

    29、与C重合,四边形PBQE即为四边形FBCE,如图2所示:同法可知BPE90,此时四边形PBQE是矩形综上所述,t0s或6s时,四边形PBQE是矩形,AE6,矩形PBQE的面积矩形ABDE的面积ABAE6636;正六边形ABCDEF的面积6AOB的面积6矩形ABDE的面积63654,矩形PBQE的面积与正六边形ABCDEF的面积之比26如图,在平面直角坐标系中,抛物线yx2+bx+c与x轴交于点A,B,与y轴交于点C且直线yx6过点B,与y轴交于点D,点C与点D关于x轴对称,点P是线段OB上一动点,过点P作x轴的垂线交抛物线于点M,交直线BD于点N(1)求抛物线的函数解析式;(2)当MDB的面积

    30、最大时,求点P的坐标;(3)在(2)的条件下,在y轴上是否存在点Q,使得以Q,M,N三点为顶点的三角形是直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由【分析】(1)由一次函数图象与坐标轴交点B、D的坐标,再由对称求得C点坐标,再用待定系数法求抛物线的解析式;(2)设P(m,0),则M(m,m2+5m+6),N(m,m6),由三角形的面积公式求得MDB的面积关于m的二次函数,最后根据二次函数的最大值的求法,求得m的值,进而得P点的坐标;(3)分三种情况:M为直角顶点;N为直角顶点;Q为直角顶点分别得出Q点的坐标解:(1)令y0,得yx60,解得x6,B(6,0),令x0,得yx66,

    31、D(0,6),点C与点D关于x轴对称,C(0,6),把B、C点坐标代入yx2+bx+c中,得,解得,抛物线的解析式为:yx2+5x+6;(2)设P(m,0),则M(m,m2+5m+6),N(m,m6),则MNm2+4m+12,MDB的面积3m2+12m+363(m2)2+48,当m2时,MDB的面积最大,此时,P点的坐标为(2,0);(3)由(2)知,M(2,12),N(2,4),当QMN90时,QMx轴,则Q(0,12);当MNQ90时,NQx轴,则Q(0,4);当MQN90时,设Q(0,n),则QM2+QN2MN2,即4+(12n)2+4+(n+4)2(12+4)2,解得,n4,Q(0,4+)或(0,4)综上,存在以Q,M,N三点为顶点的三角形是直角三角形其Q点坐标为(0,12)或(0,4)或(0,4+)或(0,4)

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2020年内蒙古通辽市中考数学试卷-(解析版).doc
    链接地址:https://www.163wenku.com/p-5556969.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库