2019年中考数学试卷分类汇编-反比例函数应用题.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《2019年中考数学试卷分类汇编-反比例函数应用题.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 年中 数学试卷 分类 汇编 反比例 函数 应用题 下载 _真题分类汇编_中考复习_数学_初中
- 资源描述:
-
1、反比例函数应用题1、(2018曲靖)某地资源总量Q一定,该地人均资源享有量与人口数n的函数关系图象是()ABCD考点:反比例函数的应用;反比例函数的图象分析:根据题意有:=;故y与x之间的函数图象双曲线,且根据,n的实际意义,n应大于0;其图象在第一象限解答:解:由题意,得Q=n,=,Q为一定值,是n的反比例函数,其图象为双曲线,又0,n0,图象在第一象限故选B点评:此题考查了反比例函数在实际生活中的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限2、(2018绍兴)教室里的饮水机接通电源就进入自动程序,开机加热时
2、每分钟上升10,加热到100,停止加热,水温开始下降,此时水温()与开机后用时(min)成反比例关系直至水温降至30,饮水机关机饮水机关机后即刻自动开机,重复上述自动程序若在水温为30时,接通电源后,水温y()和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50的水,则接通电源的时间可以是当天上午的()A7:20B7:30C7:45D7:50考点:反比例函数的应用分析:第1步:求出两个函数的解析式;第2步:求出饮水机完成一个循环周期所需要的时间;第3步:求出每一个循环周期内,水温不超过50的时间段;第4步:结合4个选择项,逐一进行分析计算,得出结论解答:解:开机加热时
3、每分钟上升10,从30到100需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30y=10x+30(0x7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入y=得k=700,y=,将y=30代入y=,解得x=;y=(7x),令y=50,解得x=14所以,饮水机的一个循环周期为 分钟每一个循环周期内,在0x2及14x时间段内,水温不超过50逐一分析如下:选项A:7:20至8:45之间有85分钟853=15,位于14x时间段内,故可行;选项B:7:30至8:45之间有75分钟753=5,不在0x2及14x时
4、间段内,故不可行;选项C:7:45至8:45之间有60分钟602=13.3,不在0x2及14x时间段内,故不可行;选项D:7:50至8:45之间有55分钟552=8.3,不在0x2及14x时间段内,故不可行综上所述,四个选项中,唯有7:20符合题意故选A点评:本题主要考查了一次函数及反比例函数的应用题,还有时间的讨论问题同学们在解答时要读懂题意,才不易出错3、(2018玉林)工匠制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600煅烧时温度y()与时间x(min)成一次函数关系;锻造时,温度y()与时间x(min)成
5、反比例函数关系(如图)已知该材料初始温度是32(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于480时,须停止操作那么锻造的操作时间有多长?考点:反比例函数的应用;一次函数的应用分析:(1)首先根据题意,材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系;将题中数据代入用待定系数法可得两个函数的关系式;(2)把y=480代入y=中,进一步求解可得答案解答:解:(1)停止加热时,设y=(k0),由题意得600=,解得k=4800,当y=800时,解得x=6,点B的坐标为(6,800)材料加热时,
展开阅读全文