书签 分享 收藏 举报 版权申诉 / 33
上传文档赚钱

类型2019年中考数学试卷.doc

  • 上传人(卖家):2023DOC
  • 文档编号:5555564
  • 上传时间:2023-04-24
  • 格式:DOC
  • 页数:33
  • 大小:1.60MB
  • 【下载声明】
    1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
    2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
    3. 本页资料《2019年中考数学试卷.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
    4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
    5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
    配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    2019 年中 数学试卷 下载 _模拟试题_中考复习_数学_初中
    资源描述:

    1、2019年中考数学试卷1、如图,在RtABC中,C=90,AB=10cm,AC:BC=4:3,点P从点A出发沿AB方向向点B运动,速度为1cm/s,同时点Q从点B出发沿BCA方向向点A运动,速度为2cm/s,当一个运动点到达终点时,另一个运动点也随之停止运动(1)求AC、BC的长;(2)设点P的运动时间为x(秒),PBQ的面积为y(cm2),当PBQ存在时,求y与x的函数关系式,并写出自变量x的取值范围;(3)当点Q在CA上运动,使PQAB时,以点B、P、Q为定点的三角形与ABC是否相似,请说明理由;(4)当x=5秒时,在直线PQ上是否存在一点M,使BCM得周长最小,若存在,求出最小周长,若不

    2、存在,请说明理由解:(1)设AC=4x,BC=3x,在RtABC中,AC2+BC2=AB2,即:(4x)2+(3x)2=102,解得:x=2,AC=8cm,BC=6cm;(2)当点Q在边BC上运动时,过点Q作QHAB于H,AP=x,BP=10x,BQ=2x,QHBACB,QH=x,y=BPQH=(10x)x=x2+8x(0x3),当点Q在边CA上运动时,过点Q作QHAB于H,AP=x,BP=10x,AQ=142x,AQHABC,即:,解得:QH=(14x),y=PBQH=(10x)(14x)=x2x+42(3x7);y与x的函数关系式为:y=;(3)AP=x,AQ=14x,PQAB,APQAC

    3、B,即:,解得:x=,PQ=,PB=10x=,当点Q在CA上运动,使PQAB时,以点B、P、Q为定点的三角形与ABC不相似;(4)存在理由:AQ=142x=1410=4,AP=x=5,AC=8,AB=10,PQ是ABC的中位线,PQAB,PQAC,PQ是AC的垂直平分线,PC=AP=5,当点M与P重合时,BCM的周长最小,BCM的周长为:MB+BC+MC=PB+BC+PC=5+6+5=16BCM的周长最小值为162、(12分) 如图,矩形ABCD中,点P在边CD上,且与点C、 D不重合,过点A作AP的垂线与CB的延长线相交于点Q,连接PQ,PQ的中点为M.(1)求证:ADPABQ;(2)若AD

    4、=10,AB=20,点P在边CD上运动,设DP=x, BM 2=y,求y与x的函数关系式,并求线段BM长的最小值;(3)若AD=10, AB=a, DP=8,随着a的大小的变化,点M的位置也在变化,当点M落在矩形ABCD外部时,求a的取值范围。解:(1)证明: 四边形ABCD是矩形 ADP=ABC=BAD=90ABC+ABQ=18010x20-xNABQ=ADP =90AQAP PAQ=90QAB+ BAP=90又PAD+BAP=90PAD=QAB在ADP与ABQ中ADPABQ(2)如图,作MNQC,则QNM=QCD=90又MQN=PQCMQNPQC 点M是PQ的中点 又 ADPABQ 在Rt

    5、MBN中,由勾股定理得:即: 108ABCPDQM10a10当即时,线段BM长的最小值. (3)如图,当点PQ中点M落在AB上时,此时QB=BC=10由ADPABQ得解得:随着a的大小的变化,点M的位置也在变化,当点M落在矩形ABCD外部时,求a的取值范围为:3、如图,抛物线关于直线对称,与坐标轴交于三点,且,点在抛物线上,直线是一次函数的图象,点是坐标原点.(1)求抛物线的解析式;(2)若直线平分四边形的面积,求的值.(3)把抛物线向左平移1个单位,再向下平移2个单位,所得抛物线与直线交于两点,问在轴正半轴上是否存在一定点,使得不论取何值,直线与总是关于轴对称?若存在,求出点坐标;若不存在,

    6、请说明理由.答案:(1)因为抛物线关于直线x=1对称,AB=4,所以A(-1,0),B(3,0),由点D(2,1.5)在抛物线上,所以,所以3a+3b=1.5,即a+b=0.5,又,即b=-2a,代入上式解得a=-0.5,b=1,从而c=1.5,所以.24(14分)(2013温州)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(6,0),B(0.8),点C的坐标为(0,m),过点C作CEAB于点E,点D为x轴上的一动点,连接CD,DE,以CD,DE为边作CDEF(1)当0m8时,求CE的长(用含m的代数式表示);(2)当m=3时,是否存在点D,使CDEF的顶点F恰好落在y轴上?若存

    7、在,求出点D的坐标;若不存在,请说明理由;(3)点D在整个运动过程中,若存在唯一的位置,使得CDEF为矩形,请求出所有满足条件的m的值解答:解:(1)A(6,0),B(0,8)OA=6,OB=8AB=10,CEB=AOB=90,又OBA=EBC,BCEBAO,=,即=,CE=m;(2)m=3,BC=8m=5,CE=m=3BE=4,AE=ABBE=6点F落在y轴上(如图2)DEBO,EDABOA,=即=OD=,点D的坐标为(,0)(3)取CE的中点P,过P作PGy轴于点G则CP=CE=m()当m0时,当0m8时,如图3易证GCP=BAO,cosGCP=cosBAO=,CG=CPcosGCP=(m

    8、)=mOG=OC+OG=m+m=m+根据题意得,得:OG=CP,m+=m,解得:m=;当m8时,OGCP,显然不存在满足条件的m的值()当m=0时,即点C与原点O重合(如图4)()当m0时,当点E与点A重合时,(如图5),易证COAAOB,=,即=,解得:m=当点E与点A不重合时,(如图6)OG=OCOG=m(m)=m由题意得:OG=CP,m=m解得m=综上所述,m的值是或0或或28、如图,过原点的直线l1:y=3x,l2:y=x点P从原点O出发沿x轴正方向以每秒1个单位长度的速度运动直线PQ交y轴正半轴于点Q,且分别交l1、l2于点A、B设点P的运动时间为t秒时,直线PQ的解析式为y=x+t

    9、AOB的面积为Sl(如图)以AB为对角线作正方形ACBD,其面积为S2(如图)连接PD并延长,交l1于点E,交l2于点F设PEA的面积为S3;(如图)(1)Sl关于t的函数解析式为_;(2)直线OC的函数解析式为_;(3)S2关于t的函数解析式为_;(4)S3关于t的函数解析式为_解:(1)由,得,A点坐标为(,)由得B点坐标为(,)S1=SAOPSBOP=t2(2)由(1)得,点C的坐标为(,)设直线OC的解析式为y=kx,根据题意得=,k=,直线OC的解析式为y=x(3)由(1)、(2)知,正方形ABCD的边长CB=t=,S2=CB2=()2=(4)设直线PD的解析式为y=k1x+b,由(

    10、1)知,点D的坐标为(t,),将P(t,0)、D()代入得,解得直线PD的解析式为y=由,得E点坐标为(,)S3=SEOPSAOP=tttt=t225(10分)(2013天津)在平面直角坐标系中,已知点A(2,0),点B(0,4),点E在OB上,且OAE=0BA()如图,求点E的坐标;()如图,将AEO沿x轴向右平移得到AEO,连接AB、BE设AA=m,其中0m2,试用含m的式子表示AB2+BE2,并求出使AB2+BE2取得最小值时点E的坐标;当AB+BE取得最小值时,求点E的坐标(直接写出结果即可)考点:相似形综合题3718684分析:()根据相似三角形OAEOBA的对应边成比例得到=,则易

    11、求OE=1,所以E(0,1);()如图,连接EE在RtABO中,勾股定理得到AB2=(2m)2+42=m24m+20,在RtBEE中,利用勾股定理得到BE2=EE2+BE2=m2+9,则AB2+BE2=2m24m+29=2(m1)2+27所以由二次函数最值的求法知,当m=1即点E的坐标是(1,1)时,AB2+BE2取得最小值解答:解:()如图,点A(2,0),点B(0,4),OA=2,OB=4OAE=0BA,EOA=AOB=90,OAEOBA,=,即=,解得,OE=1,点E的坐标为(0,1);()如图,连接EE由题设知AA=m(0m2),则AO=2m在RtABO中,由AB2=AO2+BO2,得

    12、AB2=(2m)2+42=m24m+20AEO是AEO沿x轴向右平移得到的,EEAA,且EE=AABEE=90,EE=m又BE=OBOE=3,在RtBEE中,BE2=EE2+BE2=m2+9,AB2+BE2=2m24m+29=2(m1)2+27当m=1时,AB2+BE2可以取得最小值,此时,点E的坐标是(1,1)如图,过点A作ABx,并使AB=BE=3易证ABAEBE,BA=BE,AB+BE=AB+BA当点B、A、B在同一条直线上时,AB+BA最小,即此时AB+BE取得最小值易证ABAOBA,=,AA=2=,EE=AA=,点E的坐标是(,1)点评:本题综合考查了相似三角形的判定与性质、平移的性

    13、质以及勾股定理等知识点此题难度较大,需要学生对知识有一个系统的掌握17、(12分)(2013雅安)如图,已知抛物线y=ax2+bx+c经过A(3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,ADF的面积为S求S与m的函数关系式;S是否存在最大值?若存在,求出最大值及此时点E的坐标; 若不存在,请说明理由解:(1)由题意可知:解

    14、得:抛物线的解析式为:y=x22x+3;(2)PBC的周长为:PB+PC+BCBC是定值,当PB+PC最小时,PBC的周长最小,点A、点B关于对称轴I对称,连接AC交l于点P,即点P为所求的点AP=BPPBC的周长最小是:PB+PC+BC=AC+BCA(3,0),B(1,0),C(0,3),AC=3,BC=;(3)抛物线y=x22x+3顶点D的坐标为(1,4)A(3,0)直线AD的解析式为y=2x+6点E的横坐标为m,E(m,2m+6),F(m,m22m+3)EF=m22m+3(2m+6)=m24m3S=SDEF+SAEF=EFGH+EFAC=EFAH=(m24m3)2=m24m3;S=m24

    15、m3=(m+2)2+1;当m=2时,S最大,最大值为1此时点E的坐标为(2,2)16、(12分)(2013南昌)已知抛物线yn=(xan)2+an(n为正整数,且0a1a2an)与x轴的交点为An1(bn1,0)和An(bn,0),当n=1时,第1条抛物线y1=(xa1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为( , );依此类推第n条抛物线yn的顶点坐标为( , );所有抛物线的顶点坐标满足的函数关系式是 ;(3)探究下列结论:若用An1An表示第n条抛物线被x轴截得的线段长,直接写出A0A1

    16、的值,并求出An1An;是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得的线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由解:(1)当n=1时,第1条抛物线y1=(xa1)2+a1与x轴的交点为A0(0,0),0=(0a1)2+a1,解得a1=1或a1=0由已知a10,a1=1,y1=(x1)2+1令y1=0,即(x1)2+1=0,解得x=0或x=2,A1(2,0),b1=2由题意,当n=2时,第2条抛物线y2=(xa2)2+a2经过点A1(2,0),0=(2a2)2+a2,解得a2=1或a2=4,a1=1,且已知a2a1,a2=4,y2=(x4)2

    17、+4a1=1,b1=2,y2=(x4)2+4(2)抛物线y2=(x4)2+4,令y2=0,即(x4)2+4=0,解得x=2或x=6A1(2,0),A2(6,0)由题意,当n=3时,第3条抛物线y3=(xa3)2+a3经过点A2(6,0),0=(6a3)2+a3,解得a3=4或a3=9a2=4,且已知a3a2,a3=9,y3=(x9)2+9y3的顶点坐标为(9,9)由y1的顶点坐标(1,1),y2的顶点坐标(4,4),y3的顶点坐标(9,9),依此类推,yn的顶点坐标为(n2,n2)所有抛物线顶点的横坐标等于纵坐标,顶点坐标满足的函数关系式是:y=x(3)A0(0,0),A1(2,0),A0A1

    18、=2yn=(xn2)2+n2,令yn=0,即(xn2)2+n2=0,解得x=n2+n或x=n2n,An1(n2n,0),An(n2+n,0),即An1An=(n2+n)(n2n)=2n存在设过点(2,0)的直线解析式为y=kx+b,则有:0=2k+b,得b=2k,y=kx2k设直线y=kx2k与抛物线yn=(xn2)2+n2交于E(x1,y1),F(x2,y2)两点,联立两式得:kx2k=(xn2)2+n2,整理得:x2+(k2n2)x+n4n22k=0,x1+x2=2n2k,x1x2=n4n22k过点F作FGx轴,过点E作EGFG于点G,则EG=x2x1,FG=y2y1=(x2n2)2+n2

    19、(x1n2)2+n2=(x1+x22n2)(x1x2)=k(x2x1)在RtEFG中,由勾股定理得:EF2=EG2+FG2,即:EF2=(x2x1)2+k(x2x1)2=(k2+1)(x2x1)2=(k2+1)(x1+x2)24x1x2,将x1+x2=2n2k,x1x2=n4n22k代入,整理得:EF2=(k2+1)4n2(1k)+k2+8k,当k=1时,EF2=(1+1)(1+8)=9,EF=3为定值,k=1满足条件,此时直线解析式为y=x2存在满足条件的直线,该直线的解析式为y=x215(2012义乌市)如图1,已知直线y=kx与抛物线y=交于点A(3,6)(1)求直线y=kx的解析式和线

    20、段OA的长度;(2)点P为抛物线第一象限内的动点,过点P作直线PM,交x轴于点M(点M、O不重合),交直线OA于点Q,再过点Q作直线PM的垂线,交y轴于点N试探究:线段QM与线段QN的长度之比是否为定值?如果是,求出这个定值;如果不是,说明理由;(3)如图2,若点B为抛物线上对称轴右侧的点,点E在线段OA上(与点O、A不重合),点D(m,0)是x轴正半轴上的动点,且满足BAE=BED=AOD继续探究:m在什么范围时,符合条件的E点的个数分别是1个、2个?解答:解:(1)把点A(3,6)代入y=kx 得;6=3k,k=2,y=2x(2012义乌市)OA=(3分)(2)是一个定值,理由如下:如答图

    21、1,过点Q作QGy轴于点G,QHx轴于点H当QH与QM重合时,显然QG与QN重合,此时;当QH与QM不重合时,QNQM,QGQH不妨设点H,G分别在x、y轴的正半轴上,MQH=GQN,又QHM=QGN=90QHMQGN(5分),当点P、Q在抛物线和直线上不同位置时,同理可得 (7分)(3)如答图2,延长AB交x轴于点F,过点F作FCOA于点C,过点A作ARx轴于点RAOD=BAE,AF=OF,OC=AC=OA=ARO=FCO=90,AOR=FOC,AORFOC,OF=,点F(,0),设点B(x,),过点B作BKAR于点K,则AKBARF,即,解得x1=6,x2=3(舍去),点B(6,2),BK

    22、=63=3,AK=62=4,AB=5 (8分);(求AB也可采用下面的方法)设直线AF为y=kx+b(k0)把点A(3,6),点F(,0)代入得k=,b=10,(舍去),B(6,2),AB=5(8分)(其它方法求出AB的长酌情给分)在ABE与OED中BAE=BED,ABE+AEB=DEO+AEB,ABE=DEO,BAE=EOD,ABEOED(9分)设OE=x,则AE=x (),由ABEOED得,()(10分)顶点为(,)如答图3,当时,OE=x=,此时E点有1个;当时,任取一个m的值都对应着两个x值,此时E点有2个当时,E点只有1个(11分)当时,E点有2个(12分)已知一个直角三角形纸片OA

    23、B,其中AOB=90,OA=2,OB=4,如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D。()若折叠后使点B与点A重合,求点C的坐标;()若折叠后点B落在边OA上的点为B,设OB=x,OC=y,试写出y关于x的函数解析式,并确定y的取值范围;()若折叠后点B落在边OA上的点为B,且使BDOB,求此时点C的坐标。解:()如图(1),折叠后点B与点A重合,连接AC,则ACDBCD,设点C的坐标为(0,m)(m0),则BC=OB-OC=4-m,于是AC=BC=4-m,在RtAOC中,由勾股定理,得AC2=OC2+OA2,即(4-m)2=m2+22,解得m=,

    24、点C的坐标为;()如图(2),折叠后点B落在OA边上的点为B连接BC,BD,则BCDBCD,由题设OB=x,OC=y,则BC=BC=OB-OC=4-y,在RtBOC中,由勾股定理,得BC2=OC2+OB2,(4-y)2=y2+x2,即,由点B在边OA上,有0x2,解析式(0x2)为所求,当0x2时,y随x的增大而减小,y的取值范围为;()如图(3),折叠后点B落在OA边上的点为B,连接BC,BD,BDOB,则OCB=CBD,又CBD=CBD,CB=CBD,CBBA,RtCOBRtBOA,有,得OC=20B,在RtBOC中,设OB=x0(x00),则OC=2x0,由()的结论,得2x0=,解得x

    25、0=,x00,x0=,点C的坐标为。12、在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y轴、x轴正半轴上,点P在AB上,PA=1,AO=2经过原点的抛物线y=mx2x+n的对称轴是直线x=2(1)求出该抛物线的解析式(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C现在利用图2进行如下探究:将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在

    26、的旋转过程中,是否存在点F,使DMF为等腰三角形?若不存在,请说明理由(1)抛物线y=mx2x+n经过原点,n=0对称轴为直线x=2,=2,解得m=抛物线的解析式为:y=x2x(2)的值不变理由如下:如答图1所示,过点P作PGx轴于点G,则PG=AO=2PEPF,PAPG,APE=GPF在RtPAE与RtPGF中,APE=GPF,PAE=PGF=90,RtPAERtPGF=存在抛物线的解析式为:y=x2x,令y=0,即x2x=0,解得:x=0或x=4,D(4,0)又y=x2x=(x2)21,顶点M坐标为(2,1)若DMF为等腰三角形,可能有三种情形:(I)FM=FD如答图2所示:过点M作MNx

    27、轴于点N,则MN=1,ND=2,MD=设FM=FD=x,则NF=NDFD=2x在RtMNF中,由勾股定理得:NF2+MN2=MF2,即:(2x)2+1=x2,解得:x=,FD=,OF=ODFD=4=,F(,0);(II)若FD=DM如答图3所示:此时FD=DM=,OF=ODFD=4F(4,0);(III)若FM=MD由抛物线对称性可知,此时点F与原点O重合而由题意可知,点E与点A重合后即停止运动,故点F不可能运动到原点O此种情形不存在综上所述,存在点F(,0)或F(4,0),使DMF为等腰三角形如图1,两块等腰直角三角板ABC和DEF有一条边在同一条直线l上,ABC =DEF = 90,AB

    28、= 1,DE = 2将直线EB绕点E逆时针旋转45,交直线AD于点M将图1中的三角板ABC沿直线l向右平移,设C、E两点间的距离为x11、(第11题图1)CDEAFMlB(第11题图2)DEF(C)ABMl请你和艾思轲同学一起尝试探究下列问题:(1)当点C与点F重合时,如图2所示,可得的值为 ;在平移过程中,的值为 (用含x的代数式表示);(2)艾思轲同学将图2中的三角板ABC绕点C逆时针旋转,原题中的其他条件保持不变当点A落在线段DF上时,如图3所示,请你帮他补全图形,并计算的值;(3)艾思轲同学又将图1中的三角板ABC绕点C逆时针旋转度,原题中的其他条件保持不变请你计算的值(用含x的代数式

    29、表示)(第11题备用图)DEFl(第11题图3)DEF(C)lAB11解:(1) 1 (2分) (2分)(2)联结AE,补全图形如图1所示(1分)ABC和DEF是等腰直角三角形,ABC =DEF = 90,AB = 1,DE = 2,BC = 1,EF = 2,DFE =ACB = 45,EFB = 90,点A为DF的中点(1分)EADF,EA平分DEFMAE = 90,AEF = 45,MEB =AEF = 45,MEA =BEFRtMAERtBFE(1分),(1分)(第25题图1)DEF(C)lABM(第25题图2)DEAFMlCBG,(1分)(3)如图2,过点B作BE的垂线交直线EM于点

    30、G,联结AGEBG = 90,BEM = 45,BGE = 45BE = BG(1分)ABC =EBG = 90,ABG =CBE(1分)又BA = BC,ABGCBE(1分)AG = CE = x,AGB =CEBAGB +AGM =CEB +DEM = 45,AGM =DEM,AGDE(1分)(1分)注:第(3)小题直接写出结果不得分10、如图,抛物线:yax2bx4与x轴交于点A(2,0)和B(4,0)、与y轴交于点C(1)求抛物线的解析式;(2)T是抛物线对称轴上的一点,且ACT是以AC为底的等腰三角形,求点T的坐标; 3)点M、Q分别从点A、B以每秒1个单位长度的速度沿x轴同时出发相

    31、向而行当点M原点时,点Q立刻掉头并以每秒3/2个单位长度的速度向点B方向移动,当点M到达抛物线的对称轴时,两点停止运动过点M的直线l轴,交AC或BC于点P求点M的运动时间t(秒)与APQ的面积S的函数关系式,并求出S的最大值(1)、9、 如图 (1),ABC与EFD为等腰直角三角形,AC与DE重合,ABEF9,BACDEF90,固定ABC,将EFD绕点A顺时针旋转,当DF边与AB边重合时,旋转中止,不考虑旋转开始和结束时重合的情况,设DE、DF(或它们的延长线)分别交BC(或它的延长线)于G、H点,如图(2). (1)问:始终与AGC相似的三角形有( )及( ); (2)设CGx,BHy,求y

    32、关于x的函数关系式(只要求根据图(2)的情况说明理由); (3)问:当x为何值时,AGH是等腰三角形?解:(1)HGA及HAB; (2)由(1)可知AGCHAB 即,所以,y (3)当CGBC时,GACHHAC, ACCH AGAC,AGAG,AHGH 此时,AGH不可能是等腰三角形; 当CG=BC时,G为BC的中点,H与C重合, AGH是等腰三角形; 此时,GC=,即x= 当CGBC时,由(1)可知AGCHGA, 所以,若AGH是等腰三角形,只可能存在AGAH 若AGAH,则ACCG,此时x9 综上,当x9或时,AGH是等腰三角形8、如图,已知二次函数y=的图象与y轴交于点A,与x轴 交于B

    33、、C两点,其对称轴与x轴交于点D,连接AC (1)点A的坐标为_ ,点C的坐标为_ ; (2)线段AC上是否存在点E,使得EDC为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由; (3)点P为x轴上方的抛物线上的一个动点,连接PA、PC,若所得PAC的面积为S,则S取何值时,相应的点P有且只有2个?28解:(1)A(0,4),C(8,0)2分(2)易得D(3,0),CD=5设直线AC对应的函数关系式为,则 解得 3分 当DE=DC时,OA=4,OD=3DA=5,(0,4) 4分当ED=EC时,可得(,)5分当CD=CE时,如图,过点E作EGCD,则CEG CAO,即,(,)6分综上,符合条件的点E有三个:(0,4),(,),(,)(3)如图,过P作PHOC,垂足为H,交直线AC于点Q设P(m,),则Q(,)当时, PQ=()()=,7分; 8分当时, PQ=()()=,9分故时,相应的点P有且只有两个10分7、如图,抛物线的顶点为A(2,1),且经过原点O,与x轴的另一个交点为B (1)求抛物线的解析式(2)在抛物线上求点M,使MOB的面积是AOB面积的2倍;(3)点C在抛物线的对称轴上,在抛物线上是否存在点P,使以O、B、P、C为顶点的四边形为平行四边形?若存在,求出P的坐标;若不存在,说明理由。

    展开阅读全文
    提示  163文库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:2019年中考数学试卷.doc
    链接地址:https://www.163wenku.com/p-5555564.html

    Copyright@ 2017-2037 Www.163WenKu.Com  网站版权所有  |  资源地图   
    IPC备案号:蜀ICP备2021032737号  | 川公网安备 51099002000191号


    侵权投诉QQ:3464097650  资料上传QQ:3464097650
       


    【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。

    163文库