中考全国份试卷分类汇编:矩形(含答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《中考全国份试卷分类汇编:矩形(含答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 全国 试卷 分类 汇编 矩形 答案
- 资源描述:
-
1、2013中考全国100份试卷分类汇编矩形BCDA第9题图MN1、(2013陕西)如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC是,连接BM、DN,若四边形MBND是菱形,则等于 ( )A B C D考点:矩形的性质及菱形的性质应用。解析:矩形的性质应用较为常见的就是转化成直角三角形来解决问题,菱形的性质应用较常见的是四条边相等或者对角线的性质应用。此题中求的是线段的比值,所以在解决过程中取特殊值法较为简单。设AB=1,则AD=2,因为四边形MBND是菱形,所以MB=MD,又因为矩形ABCD,所以A=90,设AM=x,则MB=2-x,由勾股定理得:AB2+AM2=MB2,所以x
2、2+12=(2-x)2解得:,所以MD=,故选C2、(2013济宁)如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;依此类推,则平行四边形AO4C5B的面积为()A cm2B cm2Ccm2Dcm2考点:矩形的性质;平行四边形的性质专题:规律型分析:根据矩形的对角线互相平分,平行四边形的对角线互相平分可得下一个图形的面积是上一个图形的面积的,然后求解即可解答:解:设矩形ABCD的面积为S=20cm2,O为矩形ABCD的对角线的交点,平行四边形AOC1B底边AB上的高等于BC的,平行四
3、边形AOC1B的面积=S,平行四边形AOC1B的对角线交于点O1,平行四边形AO1C2B的边AB上的高等于平行四边形AOC1B底边AB上的高的,平行四边形AO1C2B的面积=S=,依此类推,平行四边形AO4C5B的面积=cm2故选B点评:本题考查了矩形的对角线互相平分,平行四边形的对角线互相平分的性质,得到下一个图形的面积是上一个图形的面积的是解题的关键3、(2013天津)如图,在ABC中,AC=BC,点D、E分别是边AB、AC的中点,将ADE绕点E旋转180得CFE,则四边形ADCF一定是()A矩形B菱形C正方形D梯形考点:旋转的性质;矩形的判定分析:根据旋转的性质可得AE=CE,DE=EF
4、,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出ADC=90,再利用有一个角是直角的平行四边形是矩形解答解答:解:ADE绕点E旋转180得CFE,AE=CE,DE=EF,四边形ADCF是平行四边形,AC=BC,点D是边AB的中点,ADC=90,四边形ADCF矩形故选A点评:本题考查了旋转的性质,矩形的判定,主要利用了对角线互相平分的四边形是平行四边形,有一个角是直角是平行四边形是矩形的判定方法,熟练掌握旋转变换只改变图形的位置不改变图形的形状与大小是解题的关键4、(2013四川南充,3分)如图,把矩形ABCD沿EF翻折,点B恰好落
5、在AD边的B处,若AE=2,DE=6,EFB=60,则矩形ABCD的面积是 ( )A.12 B. 24 C. 12 D. 16答案:D解析:由两直线平行内错角相等,知DEFEFB=60,又AEF=EF120,所以,E=60,EAE2,求得,所以,AB2,矩形ABCD的面积为S2816,选D。5、(2013四川宜宾)矩形具有而菱形不具有的性质是()A两组对边分别平行 B对角线相等C对角线互相平分 D两组对角分别相等考点:矩形的性质;菱形的性质分析:根据矩形与菱形的性质对各选项分析判断后利用排除法求解解答:解:A矩形与菱形的两组对边都分别平行,故本选项错误;B矩形的对角线相等,菱形的对角线不相等,
6、故本选项正确;C矩形与菱形的对角线都互相平分,故本选项错误;D矩形与菱形的两组对角都分别相等,故本选项错误故选B点评:本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键6、(2013包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是()AS1S2BS1=S2CS1S2D3S1=2S2考点:矩形的性质分析:由于矩形ABCD的面积等于2个ABC的面积,而ABC的面积又等于矩形AEFC的一半,所以可得两个矩形的面积关系解答:解:矩形ABCD的面积S=2SABC,而SABC=S矩形AEFC,即S1=S2,故选
7、B点评:本题主要考查了矩形的性质及面积的计算,能够熟练运用矩形的性质进行一些面积的计算问题7、(2013湖州)如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE若DE:AC=3:5,则的值为()ABCD考点:矩形的性质;翻折变换(折叠问题)分析:根据翻折的性质可得BAC=EAC,再根据矩形的对边平行可得ABCD,根据两直线平行,内错角相等可得DAC=BAC,从而得到EAC=DAC,设AE与CD相交于F,根据等角对等边的性质可得AF=CF,再求出DF=EF,从而得到ACF和EDF相似,根据相似三角形对应边成比例求出=,设DF=3x,FC=5x,在RtADF中,利用勾股
8、定理列式求出AD,再根据矩形的对边相等求出AB,然后代入进行计算即可得解解答:解:矩形沿直线AC折叠,点B落在点E处,BAC=EAC,AE=AB=CD,矩形ABCD的对边ABCD,DAC=BAC,EAC=DAC,设AE与CD相交于F,则AF=CF,AEAF=CDCF,即DF=EF,=,又AFC=EFD,ACFEDF,=,设DF=3x,FC=5x,则AF=5x,在RtADF中,AD=4x,又AB=CD=DF+FC=3x+5x=8x,=故选A点评:本题考查了矩形的性质,平行线的性质,等角对等边的性质,相似三角形的判定与性质,勾股定理的应用,综合性较强,但难度不大,熟记各性质是解题的关键8、(201
9、3宜昌)如图,在矩形ABCD中,ABBC,AC,BD相交于点O,则图中等腰三角形的个数是()A8B6C4D2考点:等腰三角形的判定;矩形的性质分析:根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形解答:解:四边形ABCD是矩形,AO=BO=CO=DO,ABO,BCO,DCO,ADO都是等腰三角形,故选:C点评:此题主要考查了等腰三角形的判定,以及矩形的性质,关键是掌握矩形的对角线相等且互相平分9、(2013年河北)如已知:线段AB,BC,ABC = 90. 求作:矩形ABCD. 以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是A两人都对B两人都不对C甲对,
10、乙不对 D甲不对,乙对答案:A解析:对于甲:由两组对边分别相等的四边形是平行四边形及角B为90度,知ABCD是矩形,正确;对于乙:对角线互相平分的四边形是平行四边形及角B为90度,可判断ABCD是矩形,故都正确,选A。10、(2013台湾、20)如图,长方形ABCD中,M为CD中点,今以B、M为圆心,分别以BC长、MC长为半径画弧,两弧相交于P点若PBC=70,则MPC的度数为何?()A20B35C40D55考点:矩形的性质;等腰三角形的性质分析:根据等腰三角形两底角相等求出BCP,然后求出MCP,再根据等边对等角求解即可解答:解:以B、M为圆心,分别以BC长、MC长为半径的两弧相交于P点,B
11、P=PC,MP=MC,PBC=70,BCP=(180PBC)=(18070)=55,在长方形ABCD中,BCD=90,MCP=90BCP=9055=35,MPC=MCP=35故选B点评:本题考查了矩形的四个角都是直角的性质,等腰三角形两底角相等的性质以及等边对等角,是基础题11、(2013达州)如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10。设AE=x,则x 的取值范围是.答案:2x6解析:如图,设AGy,则BG6y,在RtGAE中,x2y2(6y)2,即(,当y0时,x取最大值为6;当y时,x取最小值2,故有2x612、
12、(2013湘西州)小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是考点:几何概率分析:先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再求出S1=S2即可解答:解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据平行线的性质易证S1=S2,故阴影部分的面积占一份,故针头扎在阴影区域的概率为点评:此题主要考查了几何概率问题,用到的知识点为:概率=相应的面积与总面积之比13、(2013哈尔滨)如图。矩形ABCD的对角线AC、BD相交于点0,过点O作OEAC交AB于E,若BC=4,AOE的面积为5,则
13、sinBOE的值为 考点:线段垂直平分线的性质;勾股定理;矩形的性质。解直角三角形分析:本题利用三角形的面积计算此题考查了矩形的性质、垂直平分线的性质以及勾股定理及解直角三角形注意数形结合思想的应用,此题综合性较强,难度较大,解答:由AOE的面积为5,找此三角形的高,作OHAE于E,得OHBC,AH=BH,由三角形的中位线BC=4 OH=2,从而AE=5,连接CE,由AO=OC, OEAC得EO是AC的垂直平分线,AE=CE,在直角三角形EBC中,BC=4,AE=5, 勾股定理得EB=3,AB=8,在直角三角形ABC中,勾股定理得AC=,BO=AC=,作EMBO于M,在直角三角形EBM中,EM
14、=BEsinABD=3=,BM= BEcosABD=3=,从而OM=,在直角三角形E0M中,勾股定理得OE=,sinBOE=14、(2013遵义)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则AEF的周长=9cm考点:三角形中位线定理;矩形的性质分析:先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出AEF的周长解答:解:在RtABC中,AC=10cm,点E、F分别是AO、AD的中点,EF是AOD的中位线,EF=OD=BD=AC=,AF=AD=BC=4cm,AE=AO=AC=,AEF的周长=AE+AF+EF=9cm
15、故答案为:9点评:本题考查了三角形的中位线定理、勾股定理及矩形的性质,解答本题需要我们熟练掌握三角形中位线的判定与性质15、(2013苏州)如图,在矩形ABCD中,点E是边CD的中点,将ADE沿AE折叠后得到AFE,且点F在矩形ABCD内部将AF延长交边BC于点G若=,则=用含k的代数式表示)考点:矩形的性质;翻折变换(折叠问题)分析:根据中点定义可得DE=CE,再根据翻折的性质可得DE=EF,AF=AD,AFE=D=90,从而得到CE=EF,连接EG,利用“HL”证明RtECG和RtEFG全等,根据全等三角形对应边相等可得CG=FG,设CG=a,表示出GB,然后求出BC,再根据矩形的对边相等
16、可得AD=BC,从而求出AF,再求出AG,然后利用勾股定理列式求出AB,再求比值即可解答:解:点E是边CD的中点,DE=CE,将ADE沿AE折叠后得到AFE,DE=EF,AF=AD,AFE=D=90,CE=EF,连接EG,在RtECG和RtEFG中,RtECGRtEFG(HL),CG=FG,设CG=a,=,GB=ka,BC=CG+BG=a+ka=a(k+1),在矩形ABCD中,AD=BC=a(k+1),AF=a(k+1),AG=AF+FG=a(k+1)+a=a(k+2),在RtABG中,AB=2a,=故答案为:点评:本题考查了矩形的性质,全等三角形的判定与性质,勾股定理的应用,以及翻折变换的性
17、质,熟记性质并作辅助线构造出全等三角形是解题的关键16、(13年北京4分11)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为_答案:20解析:由勾股定理,得AC13,因为BO为直角三角形斜边上的中线,所以,BO6.5,由中位线,得MO2.5,所以,四边形ABOM的周长为:6.52.5652017、(2013泸州)如图,点E是矩形ABCD的边CD上一点,把ADE沿AE对折,点D的对称点F恰好落在BC上,已知折痕AE=10cm,且tanEFC=,那么该矩形的周长为()A72cmB36cmC20cmD16cm考点:矩形的性质;翻折变换(折叠
18、问题)分析:根据矩形的性质可得AB=CD,AD=BC,B=D=90,再根据翻折变换的性质可得AFE=D=90,AD=AF,然后根据同角的余角相等求出BAF=EFC,然后根据tanEFC=,设BF=3x、AB=4x,利用勾股定理列式求出AF=5x,再求出CF,根据tanEFC=表示出CE并求出DE,最后在RtADE中,利用勾股定理列式求出x,即可得解解答:解:在矩形ABCD中,AB=CD,AD=BC,B=D=90,ADE沿AE对折,点D的对称点F恰好落在BC上,AFE=D=90,AD=AF,EFC+AFB=18090=90,BAF+AFB=90,BAF=EFC,tanEFC=,设BF=3x、AB
19、=4x,在RtABF中,AF=5x,AD=BC=5x,CF=BCBF=5x3x=2x,tanEFC=,CE=CFtanEFC=2x=x,DE=CDCE=4xx=x,在RtADE中,AD2+DE2=AE2,即(5x)2+(x)2=(10)2,整理得,x2=16,解得x=4,AB=44=16cm,AD=54=20cm,矩形的周长=2(16+20)=72cm故选A点评:本题考查了矩形的对边相等,四个角都是直角的性质,锐角三角函数,勾股定理的应用,根据正切值设出未知数并表示出图形中的各线段是解题的关键,也是本题的难点18、(2013年江西省)如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接D
20、E和BF,分别取DE、BF的中点M、N,连接AM,CN,MN,若AB=2,BC=2,则图中阴影部分的面积为 【答案】 2.【考点解剖】 本题考查了阴影部分面积的求法,涉及矩形的中心对称性、面积割补法、矩形的面积计算公式等知识,解题思路方法多样,计算也并不复杂,若分别计算再相加,则耗时耗力,仔细观察不难发现阴影部分的面积其实就是原矩形面积的一半(即),这种“整体思想”事半功倍,所以平时要加强数学思想、方法的学习与积累【解题思路】 BCN与ADM全等,面积也相等,口DFMN与口BEMN的面积也相等,所以阴影部分的面积其实就是原矩形面积的一半【解答过程】 ,即阴影部分的面积为.【方法规律】 仔细观察
展开阅读全文