五年高考真题分类汇编-统计与概率综合及统计案例-(2019高考复习资料).docx
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《五年高考真题分类汇编-统计与概率综合及统计案例-(2019高考复习资料).docx》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年高 考真题 分类 汇编 统计 概率 综合 案例 2019 高考 复习资料
- 资源描述:
-
1、第二节 统计与概率综合及统计案例题型138 抽样方式2013年1.(2013江西文5)总体有编号为,的个个体组成利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始由左到右依次选取两个数字,则选出来的第个个体的编号为( ). A B C D2. (2013湖南文3) 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为件,件,件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为的样本进行调查,其中从丙车间的产品中抽取了件,则( ).A. B. C. D.2014年1.(2014四川文2)在“世界读书日”前夕,为了了解某地名居民某天的阅读时间,从中抽取了
2、名居民的阅读时间进行统计分析.在这个问题中,名居民的阅读时间的全体是( ).A.总体 B.个体C.样本的容量 D.从总体中抽取的一个样本2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为的样本,已知从高中生中抽取70人,则( ). 3.(2014广东文6)为了解名学生的学习情况,采用系统抽样的方法,从中抽取容量为的样本,则分段的间隔为( ).A. B. C. D.4.(2014湖南文3)对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别
3、为,则( ).A. B. C. D. 5.(2014湖北文11)甲、乙两套设备生产的同类型产品共件,采用分层抽样的方法从中抽取一个容量为的样本进行质量检测. 若样本中有件产品由甲设备生产,则乙设备生产的产品总数为 件. 6.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为,则应从一年级本科生中抽取 名学生.2015年1.(2015四川文3)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比
4、例抽取部分学生进行调查,则最合理的抽样方法是( ).A. 抽签法 B. 系统抽样法 C. 分层抽样法 D. 随机数法1. 解析 按照各种抽样方法的适用范围可知,应使用分层抽样.故选C.2.(2015福建文13)某校高一年级有名学生,其中女生名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为的样本,则应抽取的男生人数为_2. 解析 由题意得抽样比例为,故应抽取的男生人数为(人)3.(2015北京文4)某校老年,中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有人,则该样本的老年人数为( ).类别人数老年教师中年教师青年教师合计A. B. C.
5、D. 3. 解析 依题意,老年教师人数为(人).故选C.2017年1.(2017江苏卷3)某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为,件为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取件进行检验,则应从丙种型号的产品中抽取 件1.解析 按照分层抽样的概念应从丙种型号的产品中抽取(件)题型139 样本分析用样本估计总体2013年1. (2013四川文7)某学校随机抽取个班,调查各班中有网上购物经历的人数,所得数据茎叶图如图所示.以组距为将数据分组成时,所作的频率分布直方图是( ). A. B. CD.2. (2013山东文10)将某选手的个得分去掉个最高分,去掉一个最低分,
6、个剩余分数的平均分为现场作的个分数的茎叶图后来有个数据模糊,无法辨认,在图中以表示:则个剩余分数的方差为( ) 3. (2013辽宁文5) 某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为.若低于分的人数是人,则该班的学生人数是( ).A. B. C. D. 4.(2013江苏6)抽样统计甲.乙两位设计运动员的此训练成绩(单位:环),结果如下:运动员第一次第二次第三次第四次第五次甲乙则成绩较为稳定(方差较小)的那位运动员成绩的方差为 5.(2013湖北文12)某学员在一次射击测试中射靶次,命中环数如下:,则(1)平均命中环数为 ;(2)命中环数的标准差为 6. (2013
7、辽宁文16)为了考察某校各班参加课外书法小组的人数,在全校随机抽取个班级,把每个班级参加该小组的认为作为样本数据.已知样本平均数为,样本方差为,且样本数据互不相同,则样本数据中的最大值为 . 2014年1.(2014陕西文9)某公司位员工的月工资(单位:元)为 ,其均值和方差分别为和,若从下月起每位员工的月工资增加元,则这位员工下月工资的均值和方差分别为( ).A., B., C. , D.+100,2.(2014山东文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,第五组,如图所示是根据试验数
8、据制成的频率分布直方图.已知第一组与第二组共有人,第三组中没有疗效的有人,则第三组中有疗效的人数为( ).A. B. C. D. 3.(2014江苏6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间上,其频率分布直方图如图所示,则在抽测的株树木中,有 株树木的底部周长小于频率/组距10090801101201300.0200.0250.0300.0100.015底部周长/cm(加上原点处数字0)4.(2014新课标文18) 从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表:质量指标值分组频数 (
9、1)作出这些数据的频率分布直方图;758595105(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于的产品至少要占全部产品的”的规定?5.(2014北京文18)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图: 组号分组频数10,2)622,4)834,6)1746,8)2258,10)25610,12)12712,14)6814,16)2916,18)2合计100(1)从该校随机选取一名学生,试估计这名学生
10、该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).6. (2014新课标文19) 某市为了考核甲、乙两部门的工作情况,随机访问了位市民.根据这位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门35 9440 4 4 89 751 2 2 4 5 6 6 7 7 7 8 99 7 6 6 5 3 3 2 1 1 060 1 1 2 3 4 6 8 89 8 8 7 7 7 6 6 5 5 5 5 5 4 4 4
11、3 3 3 2 1 0 070 0 1 1 3 4 4 96 6 5 5 2 0 081 2 3 3 4 56 3 2 2 2 090 1 1 4 5 6100 0 0 (1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价.7.(2014广东文17)某车间名工人年龄数据如表所示:年龄(岁)工人数(人)32合计(1) 求这名工人年龄的众数与极差;(2) 以十位数为茎,个位数为叶,作出这名工人年龄的茎叶图;(3) 求这名工人年龄的方差. 2015年1.(2015重庆文4) 重庆市2013年
12、各月的平均气温()数据的茎叶图如下:0891258200338312则这组数据的中位数是( ).A. B. C. D. 1. 解析 将茎叶图各数据从小到大排列,中位数为故选B2.(2015湖南文2) 在一次马拉松比赛中,名运动员的成绩(单位:分钟)的茎叶图如图所示.13003456688891411122233445556678150122333若将运动员按成绩由好到差编为号,再用系统抽样方法从中抽取7人,则其中成绩在区间上的运动员人数是( ).A. 3 B. 4 C. 5 D. 62. 解析 由茎叶图可知,在区间的人数为,再由系统抽样的性质可知人数为人.故选B.3.(2015湖北文2) 我国
13、古代数学名著数书九章有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( ).A134石 B169石 C338石 D1365石3. 解析 设一石米中有粒谷,这批米内夹谷石,则,得.故选B.4.(2015山东文6)为比较甲、乙两地某月时的气温状况,随机选取该月中的天,将这天中时的气温数据(单位:)制成如图所示的茎叶图. 考虑以下结论:甲地该月时的平均气温低于乙地该月时的平均气温;甲地该月时的平均气温高于乙地该月时的平均气温;甲地该月时的气温的标准差小于乙地该月时的气温的标准差;甲地该月时的气温的标准差大于乙地该月时的气温
14、的标准差.其中根据茎叶图能得到的统计结论的编号为( ).A. B. C. D. 4.解析 由茎叶图可知,甲的数据为;乙的数据为.所以,.所以,正确;又;.可得,所以.正确.故选B.5.(2015广东文12) 已知样本数据,的均值,则样本数据,的均值为 5. 解析 因为样本数据,的均值,又样本数据,的和为,所以样本数据的均值为11.评注 本题考查均值的性质.6.(2015湖北文14)某电子商务公司对名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间内,其频率分布直方图如图所示.(1)直方图中的= .(2)在这些购物者中,消费金额在区间内的购物者的人数为 .6. 解析
15、由频率分布直方图及频率和等于,可得,解之得.于是消费金额在区间内频率为,所以消费金额在区间内的购物者的人数为.7.(2015广东文17)某城市户居民的月平均用电量(单位:度),以,分组的频率分布直方图如图所示(1)求直方图中的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,的四组用户中,用分层抽样的方法抽取户居民,则从月平均用电量在的用户中应抽取多少户?7.解析 由,得(2)由图可知,月平均用电量的众数是.因为,又,所以月平均用电量的中位数在内.设中位数为,由,得,所以月平均用电量的中位数是.(3)月平均用电量为的用户有(户);月平均用电量为的用户有(户);月平均用电量为的用户
16、有(户);月平均用电量为的用户有(户).抽取比例为,所以从月平均用电量在的用户中应抽取(户)2016年1.(2016山东文3)某高校调查了名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为 .根据直方图,这名学生中每周的自习时间不少于小时的人数是( ).A.B. C. D.1. D 解析 由图可知组距为,每周的自习时间少于小时的频率为,所以,每周自习时间不少于小时的人数是人.故选D.2.(2016上海文4)某次体检,位同学的身高(单位:m)分别为,则这组数据的中位数是 (m).2. 解析 将数据从小到大排序,故中位数为.3.(2016江苏4
17、)已知一组数据,则该组数据的方差是 .3. 解析 由题意得,故.4.(2016四川文16)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年位居民每人的月均用水量(单位:吨),将数据按照分成组,制成了如图所示的频率分布直方图.(1)求直方图中的值;(2)设该市有万居民,估计全市居民中月均用水量不低于吨的人数.请说明理由;(3)估计居民月均用水量的中位数.4.解析 ()由频率分布直方图,可知:月用水量在的频率为同理,在等组的频率分别为,.由,解得()由得,位居民月均水量不低于吨的频率为.由以上样本的频率分布,可以估计万居民中月均用水量不低于吨的
18、人数为(3)设中位数为吨.因为前组的频率之和为,而前组的频率之和为,所以由,解得故可估计居民月均用水量的中位数为吨.5.(2016北京文17)某市民用水拟实行阶梯水价,每人用水量中不超过立方米的部分按元/立方米收费,超出立方米的部分按元/立方米收费,从该市随机调查了位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果为整数,那么根据此次调查,为使以上居民在该月的用水价格为元/立方米,至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替,当时,估计该市居民该月的人均水费.5. 解析 (1)由用水量的频率分布直方图知,该市居民该月用水量在区间内的频率依次为,.所以
19、该月用水量不超过立方米的居民占,用水量不超过立方米的居民占.依题意,至少定为.(2)由用水量的频率分布直方图及题意,得居民该月用水费用的数据分组与频率分布表组号12345678分组频率根据题意,该市居民该月的人均水费估计为(元).2017年1.(2017全国1文2)为评估一种农作物的种植效果,选了块地作试验田.这块地的亩产量(单位:)分别为,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( ).A的平均数 B的标准差C的最大值 D的中位数1. 解析 刻画评估这种农作物亩产量稳定程度的指标是标准差.故选B.2.(2017山东卷文8)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数
展开阅读全文