全等三角形知识点总结与复习(DOC 19页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《全等三角形知识点总结与复习(DOC 19页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全等三角形知识点总结与复习DOC 19页 全等 三角形 知识点 总结 复习 DOC 19
- 资源描述:
-
1、 全等三角形知识点总结及复习一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。同样我们把能够完全重合的两个三角形叫做全等三角形。 全等三角形定义 :能够完全重合的两个三角形称为全等三角形。(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。由此,可以得出:全等三角形的对应边相等,对应角相等。(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(2)全等三角形对应边所对的角是对应角
2、,两条对应边所夹的角是对应角;(3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。(2)两角和它们的夹边对应相等的两个三角形全等。(3)两角和其中一角的对边对应相等的两个三角形全等。(4)两边和它们的夹角对应相等的两个三角形全等。(5)斜边和一条直角边对应相等的两个直角三角形全等。4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二
3、)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。3、要善于灵活选择适当的方法判定两个三角形全等。(1)已知条件中有两角对应相等,可找:夹边相等(ASA)任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找夹角相等(SAS)第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找任一组角相等(AAS 或 ASA)夹等角的另一组边相等(SAS)(三)经典例题例1. 已知:如图所示,AB=AC,求证:. 例2. 如图所示,已
4、知:AF=AE,AC=AD,CF与DE交于点B。求证:。 例3 .如图所示,AC=BD,AB=DC,求证:。 例4. 如图所示,垂足分别为D、E,BE与CD相交于点O,且求证:BD=CE。 例5:已知:如图,在四边形ABCD中,AC平分BAD、CEAB于E,且B+D=180。求证:AE=AD+BE分析:从上面例题,可以看出,有时为了证明某两条线段和等于另一条线段,可以考虑“截长补短”的添加辅助线,本题是否仍可考虑这样“截长补短”的方法呢?由于AC是角平分线,所以在AE上截AF=AD,连结FC,可证出DADCDAFC,问题就可以得到解决。证明(一):在AE上截取AF=AD,连结FC。在DAFC和
5、DADC中DAFCDADC(边角边)AFC=D(全等三角形对应角相等)B+D=180(已知)B=EFC(等角的补角相等)在DCEB和DCEF中DCEBDCEF (角角边)BE=EFAE=AF+EFAE=AD+BE(等量代换)证明(二):在线段EA上截EF=BE,连结FC(如右图)。小结:在几何证明过程中,如果现成的三角形不可以证明,则需要我们选出所需要的三角形,这就需要我们恰到好处的添加辅助线。 (四) 全等三角形复习练习题一、选择题1如图,给出下列四组条件:;其中,能使的条件共有( )A1组B2组C3组D4组2.如图,分别为的,边的中点,将此三角形沿折叠,使点落在边上的点处若,则等于( )3
6、.如图(四),点是上任意一点,还应补充一个条件,才能推出从下列条件中补充一个条件,不一定能推出的是( )AB CDCADPB图(四)A B C D 1题图 2题图 4.如图,在ABC与DEF中,已有条件AB=DE,还需添加两个条件才能使ABCDEF,不能添加的一组条件是( ) (A)B=E,BC=EF(B)BC=EF,AC=DF (C)A=D,B=E(D)A=D,BC=EF5如图,ABC中,C = 90,AC = BC,AD是BAC的平分线,DEAB于E,若AC = 10cm,则DBE的周长等于( )A10cm B8cm C6cm D9cm6 如图所示,表示三条相互交叉的公路,现要建一个货物中
7、转站,要求它到三条公路的距离相等,则可供选择的地址有( )1处2处3处4处6题图 4题图 5题图7某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是( )A带去 B带去 C带去 D带去8如图,在中, ,是的垂直平分线,交于点,交于点已知,则的度数为( )A B C D9如图,=30,则的度数为( )A20 B30 C35 D4010如图,ACAD,BCBD,则有( )AAB垂直平分CD BCD垂直平分ABCAB1题图CAB与CD互相垂直平分 DCD平分ACBADCEB 8题图7题图 8题图 10题图 11尺规作图作的平分线方法如下:以为圆心,任意长为半
展开阅读全文