人教版高中数学必修一指数函数及其性质教案.doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版高中数学必修一指数函数及其性质教案.doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 高中数学 必修 指数函数 及其 性质 教案 下载 _其他版本_数学_高中
- 资源描述:
-
1、指数函数及其性质教案一、教学目的1、使学生掌握指数函数的概念、图象和性质;能初步简单应用。2、使学生理解数形结合的基本数学思想方法,培养学生观察、联想、类比、猜测、归纳的能力。3、使学生体验从特殊到一般的学习规律,认识事物之间的普遍联系与相互转化,培养学生用联系的观点看问题。4、通过教学互动促进师生情感,激发学生的学习兴趣,提高学生抽象、概括、分析、综合的能力。 二、教学重点、难点教学重点:指数函数的定义、图象、性质.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数性质的归纳、概括。三、教具、学具准备:多媒体课件:使用多媒体教学手段,增大教学容量和直观性,提高教学效率与质量。四、教学
2、方法遵循“以学生为主体、教师是数学课堂活动的组织者、引导者和参与者”的现代教育原则。依据本节为概念学习的特点,探究发现式教学法、类比学习法,并利用多媒体辅助教学,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,倡导学生主动参与,通过不断探究、发现,在师生互动、生生互动中,让学习过程成为学生心灵愉悦的主动认知过程。五、学法指导1.再现原有认知结构。在引入两个实例后,请学生回忆有关指数的概念,帮助学生再现原有认知结构,为理解指数函数的概念做好准备。2.领会常见数学思想方法。在借助图象研究指数函数的性质时会遇到分类讨论、数形结合等基本数学思想方法,这些方法将会贯穿整个高中的数
3、学学习。3.在互相交流和自主探究中获得发展。在实例的课堂导入、指数函数的性质研究、例题与训练、课内小结等教学环节中都安排了学生的讨论、分组、交流等活动,让学生变被动的接受和记忆知识为在合作学习的乐趣中主动地建构新知识的框架和体系,从而完成知识的内化过程。4.注意学习过程的循序渐进。在概念、图象、性质、应用的过程中按照先易后难的顺序层层递进,让学生感到有挑战、有收获,跳一跳,够得着,不同难度的题目设计将尽可能照顾到课堂学生的个体差异。六、教学过程1、复习回顾,以旧悟新函数的三要素是什么?函数的单调性反映了函数哪方面的特征?答:函数的三要素包括:定义域、值域、对应法则。函数的单调性反映了函数值随自
4、变量变化而发生变化的一种趋势,例如:某个函数当自变量取值增大时对应的函数值也增大则表明此函数为增函数,图象上反应出来越往右图象上的点越高。2、回忆实例、引入新课观看视频解答问题:在本节的问题2中时间t和碳14含量P的对应关系: 和问题1中时间x与GDP值y的对应关系y=1.073x(xN+,x20)中,问这类函数的解析式有何共同特征?它们能否构成函数? 是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 学生独立思考、小组讨论时,教师要眼观六路。耳听八方,对每一个学生在自学和小组讨论中遇到的难题,要进行适当的点拨,然后推举代表解释 。师:函数解析式都是指数形式,底数为定
5、值且自变量在指数位置。(若用a代换两个式子中的底数,并将自变量的取值范围扩展到实数集则得到)这个问题实际上就是本节课要学习的内容:(板书课题)212指数函数及其性质一指数函数的定义 一般地,函数y=ax(a0,且a1)叫做指数函数,其中x是自变量,函数的定义域是R。提问:在本定义中要注意哪些要点?1自变量x2定义域R3a的范围a0,且a14定义的形式(对应法则)y=ax进一步提问:为什么规定定义中?将a如数轴所示分为:,,,和五部分进行讨论:(1)如果, 比如,这时对于等,在实数范围内函数值不存在;(2)如果,(3)如果,是个常值函数,没有研究的必要;(4)如果或即,可以是任意实数。因为指数概
展开阅读全文