双曲线复习导学案(DOC 16页).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《双曲线复习导学案(DOC 16页).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 双曲线复习导学案DOC 16页 双曲线 复习 导学案 DOC 16
- 资源描述:
-
1、学案52双曲线导学目标: 1.了解双曲线的定义、几何图形和标准方程,知道它们的简单几何性质.2.理解数形结合的思想自主梳理1双曲线的概念平面内动点P与两个定点F1、F2(|F1F2|2c0)的距离之差的绝对值为常数2a(2a0,c0;(1)当_时,P点的轨迹是_;(2)当_时,P点的轨迹是_;(3)当_时,P点不存在2双曲线的标准方程和几何性质标准方程1(a0,b0)1(a0,b0)图形性质范围xa或xa,yRxR,ya或ya对称性对称轴:坐标轴对称中心:原点对称轴:坐标轴对称中心:原点顶点顶点坐标:A1(a,0),A2(a,0)顶点坐标:A1(0,a),A2(0,a)渐近线yxyx离心率e,
2、e(1,),其中c实虚轴线段A1A2叫做双曲线的实轴,它的长|A1A2|2a;线段B1B2叫做双曲线的虚轴,它的长|B1B2|2b;a叫做双曲线的实半轴长,b叫做双曲线的虚半轴长a、b、c的关系c2a2b2 (ca0,cb0)3.实轴长和虚轴长相等的双曲线为_,其渐近线方程为_,离心率为_自我检测1(2011安徽)双曲线2x2y28的实轴长是()A2 B2C4 D42已知双曲线1 (b0)的左、右焦点分别为F1、F2,其中一条渐近线方程为yx,点P(,y0)在该双曲线上,则等于()A12 B2C0 D43(2011课标全国)设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A,B
3、两点,|AB|为C的实轴长的2倍,则C的离心率为()A. B.C2 D34(2011武汉调研)已知点(m,n)在双曲线8x23y224上,则2m4的范围是_5已知A(1,4),F是双曲线1的左焦点,P是双曲线右支上的动点,求|PF|PA|的最小值探究点一双曲线的定义及应用例1已知定点A(0,7),B(0,7),C(12,2),以C为一个焦点作过A,B的椭圆,求另一焦点F的轨迹方程变式迁移1已知动圆M与圆C1:(x4)2y22外切,与圆C2:(x4)2y22内切,求动圆圆心M的轨迹方程探究点二求双曲线的标准方程例2已知双曲线的一条渐近线方程是x2y0,且过点P(4,3),求双曲线的标准方程变式迁
4、移2(2011安庆模拟)已知双曲线与椭圆1的焦点相同,且它们的离心率之和等于,则双曲线的方程为_探究点三双曲线几何性质的应用例3已知双曲线的方程是16x29y2144.(1)求此双曲线的焦点坐标、离心率和渐近线方程;(2)设F1和F2是双曲线的左、右焦点,点P在双曲线上,且|PF1|PF2|32,求F1PF2的大小变式迁移3已知双曲线C:y21.(1)求双曲线C的渐近线方程;(2)已知M点坐标为(0,1),设P是双曲线C上的点,Q是点P关于原点的对称点记,求的取值范围方程思想的应用例(12分)过双曲线1的右焦点F2且倾斜角为30的直线交双曲线于A、B两点,O为坐标原点,F1为左焦点(1)求|A
5、B|;(2)求AOB的面积;(3)求证:|AF2|BF2|AF1|BF1|.多角度审题(1)要求弦长|AB|需要A、B两点坐标或设而不求利用弦长公式,这就需要先求直线AB;(2)在(1)的基础上只要求点到直线的距离;(3)要充分联想到A、B两点在双曲线上这个条件【答题模板】(1)解由双曲线的方程得a,b,c3,F1(3,0),F2(3,0)直线AB的方程为y(x3)设A(x1,y1),B(x2,y2),由,得5x26x270.2分x1x2,x1x2,|AB|x1x2|.4分(2)解直线AB的方程变形为x3y30.原点O到直线AB的距离为d.6分SAOB|AB|d.8分(3)证明如图,由双曲线的
6、定义得|AF2|AF1|2,|BF1|BF2|2,10分|AF2|AF1|BF1|BF2|,即|AF2|BF2|AF1|BF1|.12分【突破思维障碍】写出直线方程,联立直线方程、双曲线方程,消元得关于x的一元二次方程,利用弦长公式求|AB|,再求点O到直线AB的距离从而求面积,最后利用双曲线的定义求证等式成立【易错点剖析】在直线和双曲线相交的情况下解题时易忽视消元后的一元二次方程的判别式0,而导致错解1区分双曲线中的a,b,c大小关系与椭圆中a,b,c的大小关系,在椭圆中a2b2c2,而在双曲线中c2a2b2;双曲线的离心率大于1,而椭圆的离心率e(0,1)2双曲线1 (a0,b0)的渐近线
7、方程是yx,1 (a0,b0)的渐近线方程是yx.3双曲线标准方程的求法:(1)定义法,根据题目的条件,判断是否满足双曲线的定义,若满足,求出相应的a、b、c,即可求得方程(2)待定系数法,其步骤是:定位:确定双曲线的焦点在哪个坐标轴上;设方程:根据焦点的位置设出相应的双曲线方程;定值:根据题目条件确定相关的系数(满分:75分)一、选择题(每小题5分,共25分)1已知M(2,0)、N(2,0),|PM|PN|3,则动点P的轨迹是()A双曲线 B双曲线左边一支C双曲线右边一支 D一条射线2设点P在双曲线1上,若F1、F2为双曲线的两个焦点,且|PF1|PF2|13,则F1PF2的周长等于()A2
8、2 B16 C14 D123(2011宁波高三调研)过双曲线1 (a0,b0)的右焦点F作圆x2y2a2的切线FM(切点为M),交y轴于点P.若M为线段FP的中点,则双曲线的离心率为()A. B. C2 D.4双曲线1的左焦点为F1,左、右顶点分别为A1、A2,P是双曲线右支上的一点,则分别以PF1和A1A2为直径的两圆的位置关系是()A相交 B相离 C相切 D内含5(2011山东)已知双曲线1(a0,b0)的两条渐近线均和圆C:x2y26x50相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为()A.1 B.1C.1 D.1二、填空题(每小题4分,共12分)6(2011上海)设m是常数,
展开阅读全文