人教版九年级数学《圆》全册知识梳理和经典中考复习题(含答案).doc
- 【下载声明】
1. 本站全部试题类文档,若标题没写含答案,则无答案;标题注明含答案的文档,主观题也可能无答案。请谨慎下单,一旦售出,不予退换。
2. 本站全部PPT文档均不含视频和音频,PPT中出现的音频或视频标识(或文字)仅表示流程,实际无音频或视频文件。请谨慎下单,一旦售出,不予退换。
3. 本页资料《人教版九年级数学《圆》全册知识梳理和经典中考复习题(含答案).doc》由用户(2023DOC)主动上传,其收益全归该用户。163文库仅提供信息存储空间,仅对该用户上传内容的表现方式做保护处理,对上传内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(点击联系客服),我们立即给予删除!
4. 请根据预览情况,自愿下载本文。本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
5. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007及以上版本和PDF阅读器,压缩文件请下载最新的WinRAR软件解压。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 九年级 数学 知识 梳理 经典 中考 复习题 答案 下载 _二轮专题_中考复习_数学_初中
- 资源描述:
-
1、人教版九年级数学圆全册知识梳理和经典中考复习题(含答案)课 题圆授课时间:备课时间:教学目标1、理解圆的基本概念与性质。2、求线段与角和弧的度数。3、圆与相似三角形、全等三角形、三角函数的综合题。4、直线和圆的位置关系。5、圆的切线的性质 和判定 。6、三角形内切圆以及三角形内心的概念。7、圆和圆的五种位置关系。8、两圆的位置关系与两个圆半径的和或差与圆心距之间的关系式。两圆相切、相交的性质。9、掌握弧长、扇形面积计算公式。10、理解圆柱、圆锥的侧面展开图。11、掌握圆柱、圆锥的侧面积和全面积计算。重点、难点三角函数的小综合题为考查重点;直线和圆的关系作为考查重点,其中直线和圆的位置关系的开放
2、题、探究题是考查重点;继续考查圆与圆的位置五种关系。对弧长、扇形面积计算以及圆柱、圆锥的侧面积和全面积的计算是考查的重点。考点及考试要求圆的基础知识,包括圆的对称性,圆心角与弧、弦之间的相等关系,圆周角与圆心角之间的关系,直径所对的圆周角是直角,以及垂径定理等内容。中考中各种题型都可能出现,占的分树比例较大。教学方法:讲授法,归纳法教学内容(一)知识点(概念)梳理与针对练习知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。圆上任意两点间的部分叫做圆弧,简称弧。连接圆上任意
3、两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。在同圆或等圆中,能够重合的两条弧叫做等弧。例 P为O内一点,OP=3cm,O半径为5cm,则经过P点的最短弦长为_;最长弦长为_知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内当点在圆外时,dr;反过来,当dr时,点在圆外。当点在圆上时,dr;反过来,当dr时,点在圆上。当点在圆内时,dr;反过来,当dr时,点在圆内。例 如图,在中,直角边,点,分别是,的中点,以点为圆心,的长为半径画圆,则点在圆A的_,点在圆A的_练习:在直角坐标平面内,圆的半径为5,圆心的坐标为试判断点与圆的位置关系知识点三
4、、圆的基本性质1圆是轴对称图形,其对称轴是任意一条过圆心的直线。2、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦对的弧。3、圆具有旋转对称性,特别的圆是中心对称图形,对称中心是圆心。圆心角定理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。4、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。圆周角定理推论:在同圆或等圆中,同弧或等弧所对的圆周角相等。圆周角定理推论:直径所对的圆周角是直角;的圆周角所对的弦是直径。例1 如图,在半径为5cm的O中,圆心O到弦AB的
5、距离为3cm,则弦AB的长是( )A4cm B6cm C8cm D10cm例2、如图,A、B、C、D是O上的三点,BAC=30,则BOC的大小是( )A、60 B、45 C、30 D、15例3、如图1和图2,MN是O的直径,弦AB、CD相交于MN上的一点P,APM=CPM(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由(2)若交点P在O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说明理由 (1) (2) 知识点四、圆与三角形的关系1、不在同一条直线上的三个点确定一个圆。2、三角形的外接圆:经过三角形三个顶点的圆。3、三角形的外心:三角形三边垂直平分线的交点,即三角形外接
6、圆的圆心。4、三角形的内切圆:与三角形的三边都相切的圆。5、三角形的内心:三角形三条角平分线的交点,即三角形内切圆的圆心。例1 如图,通过防治“非典”,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图2449所示,A、B、C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址例2 如图,点O是ABC的内切圆的圆心,若BAC=80,则BOC=( )A130 B100 C50 D65例3 如图,RtABC,C=90,AC=3cm,BC=4cm,则它的外心与顶点C的距离为( )A5
7、cm B2.5cm C3cm D4cm知识点五、直线和圆的位置关系:相交、相切、相离当直线和圆相交时,dr;反过来,当dr时,直线和圆相交。当直线和圆相切时,dr;反过来,当dr时,直线和圆相切。当直线和圆相离时,dr;反过来,当dr时,直线和圆相离。切线的性质定理:圆的切线垂直于过切点的直径切线的判定定理:经过直径的一端,并且垂直于这条直径的直线是圆的切线。切线长:在经过圆外一点的圆的切线上,这点到切点之间的线段的长叫做这点到圆的切线长。切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和圆外这点的连线平分两条切线的夹角。例1、 在中,BC=6cm,B=30,C=45,以A为圆心,
8、当半径r多长时所作的A与直线BC相切?相交?相离?知识点六、圆与圆的位置关系重点:两个圆的五种位置关系中的等价条件及它们的运用难点:探索两个圆之间的五种关系的等价条件及应用它们解题外离:两圆没有公共点,一个圆上所有的点都在另一个圆的外部相离:内含:两圆没有公共点,一个圆上所有的点都在另一个圆的内部相切:外切:两圆只有一个公共点,除公共点外一个圆上所有的点都在另一个圆的外部内切:两圆只有一个公共点,除公共点外一个圆上所有的点都在另一个圆的内部相交:两圆只有两个公共点。设两圆的半径分别为r1、r2,圆心距(两圆圆心的距离)为d,则有两圆的位置关系,d与r1和r2之间的关系 外离dr1+r2 外切d
9、=r1+r2 相交r1r2dr1+r2 内切d=r1r2 内含0dr1r2(其中d=0,两圆同心)例1如图所示,点A坐标为(0,3),OA半径为1,点B在x轴上 (1)若点B坐标为(4,0),B半径为3,试判断A与B位置关系;_A_y_x_O (2)若B过M(2,0)且与A相切,求B点坐标知识点七、正多边形和圆重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系难点:使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系正多边形的中心:所有对称轴的交点; 正多边形的半径:正多边形外接圆的半径。正多边形的边心距:正多边形内切圆的半径。正多边形的中心角:正多边形每一条边所对
10、的圆心角。正n边形的n条半径把正n边形分成n个全等的等腰三角形,每个等腰三角形又被相应的边心距分成两个全等的直角三角形。例1如图,已知正六边形ABCDEF,其外接圆的半径是a,求正六边形的周长和面积 知识点八、弧长和扇形、圆锥侧面积面积重点:n的圆心角所对的弧长L=,扇形面积S扇=、圆锥侧面积面积及其它们的应用难点:公式的应用1n的圆心角所对的弧长L=2圆心角为n的扇形面积是S扇形=3.全面积是由侧面积和底面圆的面积组成的,所以全面积=rL+r2例1已知扇形的圆心角为120,面积为300cm2 (1)求扇形的弧长; (2)若将此扇形卷成一个圆锥,则这个圆锥的轴截面面积为多少? (二)中考真题练
11、习一、选择题1(北京市西城区)如图,BC是O的直径,P是CB延长线上一点,PA切O于点A,如果PA,PB1,那么APC等于()(A)(B)(C)(D)2(北京市西城区)如果圆柱的高为20厘米,底面半径是高的,那么这个圆柱的侧面积是()(A)100平方厘米(B)200平方厘米(C)500平方厘米(D)200平方厘米3(北京市西城区)“圆材埋壁”是我国古代著名的数学菱九章算术中的一个问题,“今在圆材,埋在壁中,不知大小以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD为O的直径,弦ABCD,垂足为E,CE1寸,AB寸,求直径CD的长”依题意,CD长为()(A)寸(B)1
12、3寸(C)25寸(D)26寸4(北京市朝阳区)已知:如图,O半径为5,PC切O于点C,PO交O于点A,PA4,那么PC的长等于()(A)6(B)2(C)2(D)25(北京市朝阳区)如果圆锥的侧面积为20平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()(A)2厘米(B)2厘米(C)4厘米(D)8厘米6(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()(A)7厘米(B)16厘米(C)21厘米(D)27厘米7(重庆市)如图,O为ABC的内切圆,C,AO的延长线交BC于点D,AC4,DC1,则O的半径等于()(A)(B)(C)(D)8(
展开阅读全文